
August 19, 2021

Leibniz Universität Hannover

Institut für Angewandte Mathematik

Master thesis

Proper Orthogonal Decomposition
for Fluid Mechanics Problems

Author:
Julian Roth (10012482)

Advisor:
Prof. Dr. Thomas Wick

Coadvisor:
Prof. Dr. Sven Beuchler

ii

Abstract
The goal of this thesis is the reduced order modelling (ROM) of fluid mechanics problems by using the
proper orthogonal decomposition (POD). The main motivation of this work is the need for real-time
simulations for many engineering problems, where the underlying partial differential equation might
even be solved multiple times with different parameters.

In this thesis, the fundamentals of the proper orthogonal decomposition are explored. Thereafter,
a reduced order model based on the proper orthogonal decomposition (POD-ROM) is presented for
parabolic problems and demonstrated experimentally for the heat equation. After the finite element
simulation of the Navier-Stokes equations, we focus on the main goal, which is the reduced order
modelling of these equations. The velocity and pressure are computed by separate reduced order
models. First, we solve the momentum equation, which yields the reduced velocity. Next, three differ-
ent methods for the pressure reconstruction are discussed and we recover the pressure with a neural
network based approach.

Zusammenfassung
Das Ziel dieser Arbeit ist die Modellordnungsreduktion von Problemen aus der Strömungsmechanik
mithilfe der Proper Orthogonal Decomposition (POD). Die Hauptmotivation dieser Abschlussarbeit ist
der Bedarf nach Echtzeit-Simulationen in vielen Praxisproblemen, in denen die zugrundeliegende par-
tielle Differentialgleichung manchmal wiederholt mit unterschiedlichen Parametern gelöst weden muss.

Diese Arbeit erforscht die Grundlagen der Proper Orthogonal Decomposition. Daraufhin wird ein
Proper Orthogonal Decompostion basiertes Modellordnungsreduktionsverfahren für parabolische Prob-
leme vorgestellt und am Beispiel der Wärmeleitungsgleichung in numerischen Experimenten demon-
striert. Nach der Finite Elemente Simulation der Navier-Stokes-Gleichungen wird der Fokus auf das
Hauptziel dieser Arbeit gelegt, das in der ordnungsreduzierenden Modellbildung dieser Gleichungen
besteht. Die Geschwindigkeit und der Druck werden durch gesonderte ordnungsreduzierende Modelle
berechnet. Zuerst lösen wir die Impulserhaltungsgleichung und erhalten daraus die Geschwindigkeit.
Dann werden drei verschiedene Methoden zur Druckrekonstruktion erörtert und der Druck wird mit
einem auf neuronalen Netzwerken basierenden Verfahren ermittelt.

Table of Contents

1 Introduction 1

2 Notation and mathematical tools 3
2.1 Domains . 3
2.2 Derivatives . 3
2.3 Bounded operators and spectral theory . 4
2.4 Function spaces . 5
2.5 Differentiation in Banach spaces . 6
2.6 Optimization . 6
2.7 Acronyms . 7

3 The POD in Rm 9
3.1 Introduction . 9
3.2 Image compression . 10
3.3 The connection between the POD and the SVD . 12
3.4 POD with weighted inner product . 14

4 The POD for parabolic problems 17
4.1 Model problem and direct numerical simulation . 17
4.2 Continuous version of POD . 18
4.3 Discrete version of POD . 19
4.4 Practical considerations for POD computation . 20
4.5 Reduced order modelling . 21
4.6 Numerical results . 23

4.6.1 FEM results . 23
4.6.2 POD resuts . 24
4.6.3 POD-ROM results . 26

5 The FEM for the Navier-Stokes equations 27
5.1 The Navier-Stokes equations . 27

5.1.1 Reynolds number . 28
5.2 Problem setup of the Navier-Stokes benchmark . 28
5.3 Finite element spaces . 29
5.4 Weak formulation . 30
5.5 Solution of the weak formulation with Newton’s method 31
5.6 Numerical results . 33

iii

iv TABLE OF CONTENTS

6 The POD for the Navier-Stokes equations 37
6.1 POD of velocity and pressure . 37

6.1.1 POD of velocity . 37
6.1.2 POD of pressure . 39

6.2 Velocity POD-ROM . 44
6.3 Pressure reconstruction . 45

6.3.1 Method based on velocity modes . 45
6.3.2 Method based on pressure modes . 46
6.3.3 Neural network based pressure reconstruction 46

6.4 Numerical results . 48

7 Conclusion and outlook 53
7.1 Conclusion . 53
7.2 Outlook . 53

A Technical proofs 55
A.1 Theorem 3.3.1 . 55

Chapter 1

Introduction

Fluid mechanics is the study of fluid flow. This subject of research has applications to many areas
of nature and technology that surround us. In nature, fluid mechanics models the flow of water in
rivers, lakes and oceans. Furthermore, it enables us to create simulations of the earth’s atmosphere
and make forecasts of the weather on the next day. The study of fluids is also crucial for the industry,
especially when combining the Navier-Stokes equations, which describe fluid flow, with differential
equations that describe other physical phenomena, like the heat equation or Maxwell’s equations.
These coupled problems are called multiphysics problems and for example describe the combustion
in cars’ engines by combining fluid flow with chemical reactions. Fluid mechanics is of exceptional
significance for the automobile and aerospace industries, where with the help of the Navier-Stokes
equations quantities of interest like the drag of an airplane or car can be modeled. Traditionally,
these quantities of interest have been determined by real world experiments, e.g. by testing different
airplane wing shapes in a wind tunnel. However, these experiments are slow and costly. Hence, with
the advent of the digital age and the rise of computational power, more and more experiments have
been replaced by computer simulations based on digital twins. Scientific computing methods can lead
to a large reduction in cost and a faster research and development cycle. One of the most popular
methods for the simulation of fluid flow is the Finite Element Method (FEM). To increase the accu-
racy of finite element solutions, one needs to increase the number of unknowns in the linear equation
systems. However, this is very computationally demanding and may require many days of compute
on high performance computing clusters. Moreover, in optimization and control the underlying par-
tial differential equation needs to be solved multiple times, which poses a challenge to many classical
numerical methods.

Therefore, reduced order models (ROM) based on the proper orthogonal decomposition (POD) are
being used in many real world applications. These reduced order models solve the problem of the high
computational cost of high fidelity simulations by reducing the number of unknowns from usually a
few million to the order of 10 unknowns. Drastically reducing the number of unknowns leads to a
significant decrease in compute time and storing capacity, which in turn enables real-time simulations
[45]. This data-driven approach computes a new basis, which contains important features of the fluid
flow (or more generally of the solution of the partial differential equation), with the help of the proper
orthogonal decomposition. Therein, the proper orthogonal decomposition calculates the new basis
from a set of snapshots from the computationally expensive high fidelity direct numerical simulation
[6, 11, 12, 15, 37, 69, 65, 42], e.g. from finite element simulations, or from experimental data [5, 33].
Reduced order models have many areas of applications, including optimization of chemical processes,
mechanical engineering, acoustics and vibrations, microelectronics and electromagnetism, as well as
computational aerodynamics to only name a few [9]. Moreover, the proper orthogonal decomposition
has been used to compute reduced-order controllers [4] and to solve inverse problems [25].

1

2 CHAPTER 1. INTRODUCTION

In this work, we will analyze a proper orthogonal decomposition based reduced order model for the
time-dependent Navier-Stokes equations. In Chapter 2, we will recapitulate the mathematical tools
needed for the analysis of partial differential equations and the theoretical background of the proper
orthogonal decomposition. Next, we introduce the main idea behind the proper orthogonal decom-
position and how it can be used used in Rm in Chapter 3. In Chapter 4, we investigate the usage of
the proper orthogonal decomposition for reduced order modelling at the example of the heat equa-
tion, which is a prototypical example of a parabolic problem. The finite element simulation of the
Navier-Stokes equations are being discussed in Chapter 5 and we present first numerical experiments
of a two dimensional laminar flow around a cylinder. In Chapter 6, we explain how the proper orthog-
onal decomposition can be used for reduced order modelling of the Navier-Stokes equations. Herein,
the velocity and pressure are being modeled in a partitioned manner and different methods for the
pressure reconstruction are being presented, including a neural network based approach which is novel
to the best of the author’s knowledge. Thereafter, the results of the reduced order model are being
compared to the finite element solution. Finally, we will draw the conclusions of this thesis in Chapter
7 and give several ideas for future research. In Appendix A, we prove Theorem 3.3.1, which states
that the POD basis consists of the left singular vectors from the singular value decomposition.

Chapter 2

Notation and mathematical tools

2.1 Domains
Let us consider open domains Ω ⊂ Rd with Lipschitz boundary ∂Ω, where d ∈ {2, 3} is the dimension.
By nnn we denote the outer unit normal vector with respect to ∂Ω.

2.2 Derivatives
For partial derivatives, we use the notation

∂

∂xxxk
(·) = ∂k(·) with 1 ≤ k ≤ d,

∂

∂t (·) = ∂t(·),

and

∂2

∂xxxk∂xxx l
(·) = ∂kl(·) with 1 ≤ k, l ≤ d.

The gradient of a scalar-valued function v : Rd → R is

∇v =

∂1v
...
∂dv

 ,
and for a vector-valued function vvv : Rd → Rd it reads

∇vvv =

∂1v1 · · · ∂dv1
...

∂1vd · · · ∂dvd

 .
The divergence of a vector-valued function vvv : Rd → Rd is defined as

∇ · vvv =
d∑

k=1
∂kvk

and for a tensor-valued function σ : Rd → Rd×d it is given by

∇ · σ =


∑d

k=1 ∂kσ1k
...∑d

k=1 ∂kσdk

 .

3

4 CHAPTER 2. NOTATION AND MATHEMATICAL TOOLS

The Laplace operator of a scalar valued function u : Rd → R reads

∆u = ∇ · ∇u =
d∑

k=1
∂kku.

The convection term from the Navier-Stokes equations is defined as

(vvv · ∇)vvv =

vvv · ∇v1
...

vvv · ∇vd

 =


∑d

k=1(∂kv1)vk
...∑d

k=1(∂kvd)vk


for a vector-valued velocity vvv : Rd → Rd .

2.3 Bounded operators and spectral theory
Let V and W denote two real normed spaces. Then a bounded linear operator T : V → W
satisfies the properties

• T (αv1 + βv2) = αT (v1) + βT (v2) ∀α, β ∈ R, v1, v2 ∈ V , (linear)

• ∃c > 0 : ‖Tv‖W ≤ c‖v‖V ∀v ∈ V . (bounded)

The space of all bounded linear operators from V to W is written as L(V ,W) and the dual space
of V is defined as V ∗ = L(V ,R). Further, we employ the shorthand notation L(V) = L(V ,V).
The adjoint operator T ∗ : W ∗ → V ∗ of a linear operator T ∈ L(V ,W) is defined by the relation

〈T ∗f , v〉V ∗×V = 〈f ,Tv〉W ∗×W ∀ (f , v) ∈W ∗ ×V .

Here, 〈·, ·〉V ∗×V represents the duality pairing of V ∗ and V , which is given by

〈g, v〉V ∗×V = g(v) ∀ (g, v) ∈ V ∗ ×V .

Let V be a real Hilbert space and T ∈ L(V) a linear operator. T is a self-adjoint operator, if
T = T ∗. T is a non-negative operator, if

(Tv, v)V ≥ 0 ∀ v ∈ V .

Let V and W denote two real Banach spaces. Then, T ∈ L(V ,W) is a compact operator, if for
every sequence {vn}n∈N ⊂ V the sequence {Tvn}n∈N ⊂W has a convergent subsequence.

Let V denote a Banach space. The spectrum of T ∈ L(V) is given by

σ(T) = {λ ∈ C | (λI − T)−1 6∈ L(V)},

where I : V → V , v 7→ v is the identity operator. Let v ∈ V \ {0} and λ ∈ C such that Tv = λv.
Then, v is an eigenvector of T with corresponding eigenvalue λ. The set of all eigenvalues is the
point spectrum of T .

Theorem 2.3.1 (Hilbert-Schmidt). Let V be a Hilbert space and T ∈ L(V) a compact, self-adjoint
operator. Then, there exists a complete orthonormal basis {ψi}i∈N ⊂ V with eigenvalues {λi}i∈N such
that

Tψi = λiψi ∀ i ∈ N

and

λi −−−→i→∞
0.

2.4. FUNCTION SPACES 5

2.4 Function spaces
To introduce the Lebesgue spaces Lp(Ω) with 1 ≤ p ≤ ∞, we first define their norms for a function
u : Ω→ R, which are given by

‖u‖Lp(Ω) =
(∫

Ω
|u(xxx)|p dxxx

) 1
p
, 1 ≤ p <∞,

‖u‖L∞(Ω) = ess sup
xxx∈Ω

|u(xxx)|.

For 1 ≤ p ≤ ∞, the Lebesgue space is defined as
Lp(Ω) = {f : Ω→ R | f measurable , ‖f ‖Lp(Ω) <∞}.

These spaces are Banach spaces and for p = 2 we get the Hilbert space L2(Ω) with inner product

(u, v)L2(Ω) =
∫

Ω
u(xxx)v(xxx) dxxx.

For vector-valued functions uuu, vvv : Rd → Rd the L2-inner product is defined as

(uuu, vvv)L2(Ω) =
∫

Ω
uuu(xxx) · vvv(xxx) dxxx,

and for tensor-valued functions A,B : Rd → Rd×d it reads

(A,B)L2(Ω) =
∫

Ω
A(xxx) : B(xxx) dxxx.

Here, : represents the Frobenius inner product, which is given byA(xxx) : B(xxx) = ∑d
i=1

∑d
j=1 Aij(xxx)Bij(xxx).

For convenience, we will use the shorthand notation
(·, ·) := (·, ·)L2(Ω)

for the L2-inner product.

Let C∞c (Ω) denote the space of infinitely differentiable functions with compact support. We call
www = ∇u ∈ [L2(Ω)]d the variational gradient of u ∈ L2(Ω), if∫

Ω
www · φ dxxx = −

∫
Ω
u(∇ · φ) dxxx ∀φ ∈ [C∞c (Ω)]d .

The Sobolev spaces play an important role in the analysis of partial differential equations. In this
thesis, we only require Sobolev spaces, which contain functions that are one time weakly differentiable,
i.e.

H 1(Ω) = {f ∈ L2(Ω) | ∇f ∈ [L2(Ω)]d}.
When working with homogeneous Dirichlet boundary conditions, we will consider the space

H 1
0 (Ω) = {f ∈ H 1(Ω) | f = 0 on ∂Ω}.

Moreover, H 1(Ω) is a Hilbert space with the inner product
(u, v)H1(Ω) = (u, v)L2(Ω) + (∇u,∇v)L2(Ω).

To introduce the Bochner spaces Lp((0,T),Ω) with 1 ≤ p ≤ ∞, which are needed for the analysis of
time dependent partial differential equations, we first define their norms for a function
u : (0,T)× Ω→ R, which are given by

‖u‖Lp((0,T),Ω) =
(∫ T

0
‖u(t)‖pLp(Ω) dt

) 1
p

, 1 ≤ p <∞,

‖u‖L∞((0,T),Ω) = ess sup
t∈(0,T)

‖u(t)‖L∞(Ω).

For 1 ≤ p ≤ ∞, the Bochner space is defined as
Lp((0,T),Ω) = {f : (0,T)× Ω→ R | f Bochner measurable , ‖f ‖Lp((0,T),Ω) <∞}.

More information on Bochner spaces can be found in [23].

6 CHAPTER 2. NOTATION AND MATHEMATICAL TOOLS

2.5 Differentiation in Banach spaces

Let X and Y denote two Banach spaces and f : X → Y be a mapping. Then, the notion of
a derivative from elementary calculus textbooks can also be extended to Banach spaces. Herein,
the Gâteux detivative f ′(x)δx plays the role of the directional derivative of f at the point x ∈ X in
the direction of δx ∈ X , i.e.

f ′(x)δx = lim
ε→0

f (x + εδx)− f (x)
ε

= d
dε f (x + εδx) |ε=0 .

The Fréchet derivative at point x ∈ X exists, if there is a linear operator A ∈ L(X ,Y) and a
mapping r(x, ·) : X → Y such that

f (x + h) = f (x) + Ah + r(u, h) ∀h ∈ X

and

‖r(u, h)‖Y
‖h‖X

−−−−−→
‖h‖X→0

0.

Then A is the Fréchet derivative at point x and we write f ′(x) = A.

2.6 Optimization

Let us consider the equality constrained nonlinear minimization problem

min
xxx∈Rn

f (xxx) s.t. ccc(xxx) = 0,

with the objective function f : Rn → R and the equality constraints ccc : Rn → Rm with m ≤ n.
We call a point x ∈ Rn admissible, if the constraints are satisfied, i.e. ccc(xxx) = 0. Let us define
the Lagrange function L : Rn × Rm → R as

L(xxx,λ) = f (xxx) + λTccc(xxx).

Let f and ccc be continuously differentiable, x̄xx be a local solution to the minimization problem
and {∇ci(x̄xx)}mi=1 be linearly independent. Then, there exists a unique Lagrange multiplier
λ̄ = (λ̄1, . . . , λ̄m) ∈ Rm such that

∇xxxL(x̄xx, λ̄) = ∇f (x̄xx) +∇ccc(x̄xx)T λ̄ = 0,
∇λL(x̄xx, λ̄) = ccc(x̄xx) = 0.

These are the Karush-Kuhn-Tucker conditions (KKT conditions), which are first order necessary
optimality conditions. Additionally, let f and ccc be twice continuously differentiable. Then, the Hessian
matrix of the Lagrange function is positive semidefinite on ker∇ccc(x̄xx), i.e.

vvvT∇2
xxxxxxL(x̄xx, λ̄)vvv ≥ 0 ∀ vvv ∈ ker∇ccc(x̄xx).

These are the second order necessary optimality conditions for a local minimum. More information
on optimization can be found in [53].

2.7. ACRONYMS 7

2.7 Acronyms

Acronym Meaning
CG Conjuagte Gradient
DoF Degree of Freedom
FEM Finite Element Method
KKT Karush-Kuhn-Tucker
LBB Ladyzhenskaya-Babuska-Brezzi
NN Neural Network
PDE Partial Differential Equation
POD Proper Orthogonal Decomposition
POD-ROM Proper Orthogonal Decomposition based Reduced Order Modelling
RMSE Root Mean Squared Error
ROM Reduced Order Modelling
SSOR Symmetric Successive Overrelaxation
SVD Singular Value Decomposition

Figure 2.1: Acronyms used in this thesis

8 CHAPTER 2. NOTATION AND MATHEMATICAL TOOLS

Chapter 3

The POD in Rm

In this chapter, we introduce the main idea behind the proper orthogonal decomposition (POD) and
how it can be used used in Rm . The main objective of this method is finding low dimensional ap-
proximations to the data, which preserve the essential information of some high dimensional data set,
e.g. solutions from a direct numerical simulation. The proper orthogonal decomposition is also being
used in many other disciplines, where it is being referred to as the Karhunen-Loève decomposition
(stochastics) [40, 47], Principal Component Analysis (data analysis) [39], Hotelling transform (statis-
tics) [35] or emprirical orthogonal functions (meteorology and geophysics) [57]. For more in depth
introductions to the proper orthogonal decomposition, see also [67, 18, 68, 30]. The following chapter
largely follows [68].

3.1 Introduction
Let Y = [uuu1, . . . , uuun] ∈ Rm×n be a real-valued matrix of rank d ≤ min(m,n), whose columns
uuuj ∈ Rm , 1 ≤ j ≤ n are called snapshots. The Singular Value Decomposition (SVD) [52, 28] yields
the factorization

Y = ΨΣΦT (3.1)

of the snapshot matrix Y , where Ψ = [ψ1, . . . ,ψm] ∈ Rm×m and Φ = [φ1, . . . ,φn] ∈ Rn×n are
orthogonal matrices,

Σ =
(
D 0
0 0

)
∈ Rm×n ,

with D = diag(σ1, . . . , σd) ∈ Rd×d and σ1 ≥ σ2 ≥ · · · ≥ σd > 0. Then {ψi}di=1 and {φi}di=1 are the
eigenvectors of YYT and YTY with eigenvalues λi = σ2

i > 0 for 1 ≤ i ≤ d, due to the relations

Yφi = σiψi and YTψi = σiφi for 1 ≤ i ≤ d.

This will later play a crucial role when we introduce the method of snapshots. Using the fact that Σ
has rank d, we simplify (3.1) to

Y = Ψ(d)D
(
Φ(d)

)T
=

d∑
i=1

σiψiφ
T
i , (3.2)

where Ψ(d) = [ψ1, . . . ,ψd] ∈ Rm×d and Φ(d) = [φ1, . . . ,φd] ∈ Rn×d . From (3.2), we deduce that

uuuj =
d∑

i=1

[
D
(
Φ(d)

)T
]

ij
ψi =

d∑
i=1

[(
Ψ(d)

)T
Ψ(d)︸ ︷︷ ︸

=I∈Rd×d

D
(
Φ(d)

)T
]

ij
ψi

(3.2)=
d∑

i=1

[(
Ψ(d)

)T
Y
]

ij
ψi =

d∑
i=1

(ψi , uuuj)Rmψi .

9

10 CHAPTER 3. THE POD IN Rm

We have thus derived the Fourier series representation of uuuj , which has the form

uuuj =
d∑

i=1
(uuuj ,ψi)Rmψi .

3.2 Image compression
In a short interlude, we will now demonstrate how images can be compressed with the help of the
singular value decomposition. In the case of image compression [18][Section 2.4], we are given a
grayscale image Y ∈ Rm×n and are interested in finding a matrix Ỹ ∈ Rm×n of rank r with r � d
such that ‖Y − Ỹ ‖ is minimal. Then we have by the Eckart-Young Theorem [32] that

min
rank(Ỹ)=r

∥∥∥Y − Ỹ
∥∥∥ =

∥∥∥Y −Y (r)
∥∥∥ =


σr+1 for the 2-norm,√

d∑
i=r+1

σ2
i for the Frobenius norm,

(3.3)

which means that the truncated SVD matrix

Y (r) := Ψ
(

Σ(r) 0
0 0

)
ΦT =

r∑
i=1

σiψiφ
T
i (3.4)

with Σ(r) := diag(Σ11, . . . ,Σrr) solves the minimization problem. Therefore in the application of the
POD for image compression, we simply compute a truncated SVD which has a sufficiently high infor-
mation content.

We use a grayscale image of a forest, which is 400 pixels wide and 300 pixels high. Each pixel has an
integer value between 0 (black) and 255 (white). In Figure 3.1, we compare the original image of a
forest with its SVD approximations of rank 5, 25 and 100.

(a) Original image (b) Rank 5 approximation

(c) Rank 25 approximation (d) Rank 100 approximation

Figure 3.1: Approximation of the original image by images of lower rank

3.2. IMAGE COMPRESSION 11

The matrix representation of the image has full rank, i.e. it has rank 300. Its singular values, the
diagonal entries of the matrix Σ in the SVD, are being shown in the following Figure.

50 100 150 200 250 300

102

103

104

Index i

Si
ng

ul
ar

va
lu
e
σ

i

Figure 3.2: Singular values of the image of the forest

In Figure 3.2, we can see that the singular values decay rapidly. We thus expect the rank r approx-
imation Y (r) from equation (3.4) to be a good approximation to the data matrix Y for even small
values of r .

The only question that remains unanswered is how we should choose r . In practice, r is often being
determined heuristically, by choosing r sufficiently large such that the ratio of the energy of Y (r) to
the energy of Y is bigger than some threshold, i.e. finding the smallest r ∈ N+ such that

E(r) :=

r∑
i=1

σi

d∑
i=1

σi

≥ 99 %.

However, when we later introduce the proper orthogonal decomposition for partial differential equa-
tions, in the energy ratio we don’t sum over the singular values σi but over the eigenvalues λi = σ2

i .

In the next Figure, it is being shown how the energy ratio E(r) depends on the size r of the truncated
SVD and that a big portion of the energy ratio can be attributed to the first few singular values,
which motivates a truncated singular value decomposition.

50 100 150 200 250 300
0.2

0.4

0.6

0.8

1

Truncated SVD size r

En
er
gy

ra
tio
E(
r)

Figure 3.3: Energy ratios in dependence on the size of the truncated SVD

12 CHAPTER 3. THE POD IN Rm

In Figure 3.3, we can observe that the rank 5, rank 25 and rank 100 approximations from Figure 3.1
have energy ratios of 39 %, 55 % and 80 % respectively.

3.3 The connection between the POD and the SVD
Let us now return to the proper orthogonal decomposition, derive it through a series of optimization
problems and elucidate how it is connected to the singular value decomposition. We will now iteratively
compute an orthonormal basis, which approximates the data set {uuui}ni=1 as good as possible. These
vectors {ψi}ri=1 from our computations will be called the POD basis of rank r and we will refer to
ψi as the POD basis vectors or POD modes. The first POD basis vector solves the maximization
problem

max
ψ̃1∈Rm

n∑
j=1
|(uuuj , ψ̃1)Rm |2 s.t. ‖ψ̃1‖2Rm = 1, (P1)

and it can be shown through the Lagrange formalism that the first left singular vector ψ1 solves (P1).
The second basis vector is the solution of

max
ψ̃2∈Rm

n∑
j=1
|(uuuj , ψ̃2)Rm |2 s.t. ‖ψ̃2‖2Rm = 1, (ψ1, ψ̃2)Rm = 0, (P2)

and is given by the second left singular vector ψ2. Continuing this procedure inductively, we arrive at
the following theorem.
Theorem 3.3.1 (POD basis). Let Y = [uuu1, . . . , uuun] ∈ Rm×n with rank d ≤ min(m,n). Moreover,
let Y = ΨΣΦT be the singular value decomposition as described in (3.1). Then for 1 ≤ r ≤ d the
optimization problem

max
ψ̃1,...,ψ̃r∈Rm

r∑
i=1

n∑
j=1
|(uuuj , ψ̃i)Rm |2 s.t. (ψ̃i , ψ̃j)Rm = δij ∀1 ≤ i, j ≤ r (Pr)

is being solved by the left singular vectors {ψi}ri=1 and it holds that

arg max(Pr) =
r∑

i=1
σ2

i =
r∑

i=1
λi .

Proof. Provided in Appendix A.1.

Having made the connection between the POD basis and the SVD through Theorem 3.3.1, we again
get the optimality of the POD basis from the Eckart-Young theorem from (3.3), which means that∥∥∥Y −Y (r)

∥∥∥2

F
≤
∥∥∥Y − Ỹ

∥∥∥2

F
(3.5)

for all matrices Ỹ ∈ Rm×n of rank r . The optimal rank r approximation Y (r) defined in (3.4) can be
rewritten as

Y (r) = Ψ
(

Σ(r) 0
0 0

)
ΦT = Ψ(r) Σ(r)

(
Φ(r)

)T

︸ ︷︷ ︸
=:B(r)

,

where Ψ(r) = [ψ1, . . . ,ψr] ∈ Rm×r ,Φ(r) = [φ1, . . . ,φr] ∈ Rn×r and Σ(r) := diag(Σ11, . . . ,Σrr). Plug-
ging this into (3.5) and using the definition of the Frobenius norm yields∥∥∥Y −Y (r)

∥∥∥2

F
=
∥∥∥Y −Ψ(r)B(r)

∥∥∥2

F
=

m∑
i=1

n∑
j=1

∣∣∣Yij −
r∑

k=1
Ψ(r)

ik B(r)
kj

∣∣∣2
=

m∑
i=1

n∑
j=1

∣∣∣Yij −
r∑

k=1
(uuuj ,ψk)Rm Ψ(r)

ik

∣∣∣2
=

n∑
j=1

∥∥∥uuuj −
r∑

k=1
(uuuj ,ψk)Rm ψk

∥∥∥2

Rm
. (3.6)

3.3. THE CONNECTION BETWEEN THE POD AND THE SVD 13

Let us now consider another decomposition ofY = Ψ̃(d)C (d), where the columns {ψ̃i}di=1 of Ψ̃(d) ∈ Rm×d

are pairwise orthonormal and

C (d)
ij =

(
ψ̃i , uuuj

)
Rm

for 1 ≤ i ≤ d, 1 ≤ j ≤ n.

For Ỹ := Ψ̃(r)C (r), where Ψ̃(r) ∈ Rm×r denotes the matrix with the first r columns of Ψ̃(d) and
C (r) ∈ Rr×n denotes the matrix with the first r rows of C (d), we get analogously to (3.6) that

∥∥∥Y − Ỹ
∥∥∥2

F
=

n∑
j=1

∥∥∥uuuj −
r∑

k=1

(
uuuj , ψ̃k

)
Rm
ψ̃k
∥∥∥2

Rm
,

and hence by the Eckart-Young Theorem for the Frobenius norm (3.5), we get
n∑

j=1

∥∥∥uuuj −
r∑

k=1
(uuuj ,ψk)Rm ψk

∥∥∥2

Rm
≤

n∑
j=1

∥∥∥uuuj −
r∑

k=1

(
uuuj , ψ̃k

)
Rm
ψ̃k
∥∥∥2

Rm
.

We have thus shown that

min
ψ̃1,...,ψ̃r∈Rm

n∑
j=1

∥∥∥uuuj −
r∑

i=1

(
uuuj , ψ̃i

)
Rm
ψ̃i
∥∥∥2

Rm
s.t. (ψ̃i , ψ̃j)Rm = δij ∀1 ≤ i, j ≤ r (P̂r)

is an optimization problem that is equivalent to (Pr). When determining a POD basis of rank r ,
computing the POD modes with the highest energy (see (Pr)) and computing the POD modes with
minimal error between uuuj and uuu(r)

j := ∑r
i=1 (uuuj ,ψi)Rm ψi (see (P̂r)) yields the same basis vectors,

namely the first r left singular vectors of Y .

In practice, computing the singular value decomposition of Y is computationally expensive or even
infeasible, since Y ∈ Rm×n is a dense matrix and m or n are very large. However, we can transform
the search for the POD basis into an eigenvalue problem of size m×m or n×n, which comes in handy
if m � n or n � m. For the sake of completeness, we mention the classical method introduced by
Lumley [48] in 1967, where one needs to solve the m ×m eigenvalue problem

YYTψi = λψi for 1 ≤ i ≤ r ,

whose eigenvectors are the left singular vectors {ψi}ri=1 and the eigenvalues are λi = σ2
i for 1 ≤ i ≤ r .

This method is only practical for m � n and we will see later on in Chapter 4 that m will be the
number of degrees of freedom in the spatial discretization of the PDE, which is much larger than the
number of time steps n. Hence, the classical method is not being used for reduced order modelling
of PDEs. Therefore, in most applications the method of snapshots, which has been introduced by
Sirovich [62, 63, 64] in 1987, is being used. Herein, we need to solve the n × n eigenvalue problem

YTYφi = λiφi for 1 ≤ i ≤ r , (3.7)

whose eigenvectors are the right singular vectors {φi}ri=1 and the eigenvalues are λi = σ2
i for 1 ≤ i ≤ r .

From this the POD basis {ψi}ri=1 can be calculated through the relation

ψi = 1√
λi

Yφi for 1 ≤ i ≤ r .

Finally, we mention that for the choice of r in real world problems the formula

E(r) :=

r∑
i=1

λi

d∑
i=1

λi

≥ δE

is being employed, where E(r) is called the energy ratio and the threshold δE ∈ [0, 1] is fixed. Since we
want most of the energy to be preserved by the POD modes, we choose δE close to 1, e.g. δE = 0.99.

14 CHAPTER 3. THE POD IN Rm

Note that unlike in the case of image compression (Section 3.2), where we sum over the singular values
σi in the energy ratio, we now sum over the eigenvalues λi = σ2

i .

Our approach for the POD method in Rm can be summarized in the following algorithm.

Algorithm 1 POD basis in Rm

Input: Snapshots {uuuj}nj=1 ⊂ Rm and threshold δE ∈ [0, 1].
Output: POD basis {ψi}ri=1 ⊂ Rm and eigenvalues {λi}ri=1.

1: Set Y = [uuu1, . . . , uuun] ∈ Rm×n .
2: if m ≈ n then
3: Compute singular value decomposition [Ψ,Σ,Φ] = SVD(Y).
4: Compute r = min

{
r ∈ N

∣∣∣ E(r) = ∑r
i=1 Σ2

ii/
∑d

i=1 Σ2
ii ≥ δE , 1 ≤ r ≤ d

}
.

5: Set λi = Σ2
ii and ψi = Ψ·,i ∈ Rm for 1 ≤ i ≤ r .

6: else if m � n then
7: Compute eigenvalue decomposition [Ψ,Λ] = Eig(YYT), where YYT ∈ Rm×m .
8: Compute r = min

{
r ∈ N

∣∣∣ E(r) = ∑r
i=1 Λii/

∑d
i=1 Λii ≥ δE , 1 ≤ r ≤ d

}
.

9: Set λi = Λii and ψi = Ψ·,i ∈ Rm for 1 ≤ i ≤ r .
10: else if n � m then
11: Compute eigenvalue decomposition [Φ,Λ] = Eig(YTY), where YTY ∈ Rn×n .
12: Compute r = min

{
r ∈ N

∣∣∣ E(r) = ∑r
i=1 Λii/

∑d
i=1 Λii ≥ δE , 1 ≤ r ≤ d

}
.

13: Set λi = Λii and ψi = YΦ·,i/
√
λi ∈ Rm for 1 ≤ i ≤ r .

3.4 POD with weighted inner product
In the next chapter, we will not be working with the Euclidean inner product anymore, but with the
L2-inner product. For two functions

ψ :=
m∑

j=1
ψh

j ϕ
h
j , φ :=

m∑
j=1

φh
j ϕ

h
j ∈ L2(Ω),

we will calculate their L2-inner product as

(ψ, φ)L2(Ω) =

 m∑
j=1

ψh
j ϕ

h
j ,

m∑
i=1

φh
i ϕ

h
i


L2(Ω)

=
m∑

i,j=1
ψh

j (ϕh
j , ϕ

h
i)L2(Ω)φ

h
i = (ψh)TMhφ

h , (3.8)

where Mh ∈ Rm×m is the mass matrix with entries (Mh)ij = (ϕh
j , ϕ

h
i)L2(Ω) for 1 ≤ i, j ≤ m. We

observe that the L2-inner product of two functions ψ and φ corresponds to a weighted inner product
of their coefficient vectors ψh = (ψh

1 , . . . , ψ
h
m) ∈ Rm and φh = (φh

1 , . . . , φ
h
m) ∈ Rm . Therefore, let us

now extend the POD from Section 3.3 to weighted inner products.

We consider a weighted inner product

(ψ,φ)W := ψTWφ = (ψ,Wφ)Rm = (Wψ,φ)Rm for ψ,φ ∈ Rm ,

where W ∈ Rm×m is a symmetric, positive definite matrix. The weighted inner product induces the
norm ‖ψ‖W =

√
(ψ,ψ)W for ψ ∈ Rm . If we choose W to be the identity matrix in Rm×m , then the

weighted inner product simplifies to the Euclidean inner product.

To determine the POD vectors, we first replace (P1) by

max
ψ̃1∈Rm

n∑
j=1
|(uuuj , ψ̃1)W |2 s.t. ‖ψ̃1‖2W = 1, (P1

W)

3.4. POD WITH WEIGHTED INNER PRODUCT 15

and then we replace (P2) by

max
ψ̃2∈Rm

n∑
j=1
|(uuuj , ψ̃2)W |2 s.t. ‖ψ̃2‖2W = 1, (ψ1, ψ̃2)W = 0. (P2

W)

By induction, we arrive at the following theorem.

Theorem 3.4.1 (POD basis with weighted inner product). Let Y = [uuu1, . . . , uuun] ∈ Rm×n with rank
d ≤ min(m,n), W ∈ Rm×m be a symmetric, positive definite matrix and Ȳ = W

1
2Y . Moreover,

let Ȳ = Ψ̄ΣΦ̄T be the singular value decomposition of Ȳ , where Ψ̄ = [ψ̄1, . . . , ψ̄m] ∈ Rm×m and
Φ̄ = [φ̄1, . . . , φ̄n] ∈ Rn×n are orthogonal matrices,

Σ =
(
D 0
0 0

)
∈ Rm×n ,

with D = diag(σ1, . . . , σd) ∈ Rd×d and σ1 ≥ σ2 ≥ · · · ≥ σd > 0. Then for 1 ≤ r ≤ d the optimization
problem

max
ψ̃1,...,ψ̃r∈Rm

r∑
i=1

n∑
j=1
|(uuuj , ψ̃i)W |2 s.t. (ψ̃i , ψ̃j)W = δij ∀1 ≤ i, j ≤ r (Pr

W)

is being solved by the vectors ψi = W− 1
2 ψ̄i for 1 ≤ i ≤ r and it holds that

arg max(Pr
W) =

r∑
i=1

σ2
i =

r∑
i=1

λi .

Proof. The proof follows the same steps as Theorem 3.3.1.

Remark 3.4.2. One can again show that

min
ψ̃1,...,ψ̃r∈Rm

n∑
j=1

∥∥∥uuuj −
r∑

i=1

(
uuuj , ψ̃i

)
W
ψ̃i
∥∥∥2

W
s.t. (ψ̃i , ψ̃j)W = δij ∀1 ≤ i, j ≤ r (P̂r

W)

is an optimization problem that is equivalent to (Pr
W).

Remark 3.4.3. It holds that ȲT Ȳ = YTWY and thus due to the singular value decomposition, the
method of snapshots reads: Solve the n × n eigenvalue problem

YTWY φ̄i = λiφ̄i for 1 ≤ i ≤ i ≤ r ,

and set

ψi = W− 1
2 ψ̄i = 1√

λi
W− 1

2
(
Ȳ φ̄i

)
= 1√

λi
W− 1

2W
1
2Y φ̄i = 1√

λi
Y φ̄i ,

for 1 ≤ i ≤ r. Notice that

(ψi ,ψj)W = ψT
i Wψj = δijλj√

λiλj
= δij ∀1 ≤ i, j ≤ r ,

and that the matrix W
1
2 is not needed for the method of snapshots.

We can thus extend Algorithm 1 for the proper orthogonal decomposition in Rm to weighted inner
products now.

16 CHAPTER 3. THE POD IN Rm

Algorithm 2 POD basis in Rm with weighted inner product
Input: Snapshots {uuuj}nj=1 ⊂ Rm , threshold δE ∈ [0, 1] and symmetric, positive definite matrix
W ∈ Rm×m .
Output: POD basis {ψi}ri=1 ⊂ Rm and eigenvalues {λi}ri=1.

1: Set Y = [uuu1, . . . , uuun] ∈ Rm×n .
2: if m ≈ n then
3: Determine Ȳ = W

1
2Y ∈ Rm×n .

4: Compute singular value decomposition [Ψ̄,Σ, Φ̄] = SVD(Ȳ).
5: Compute r = min

{
r ∈ N

∣∣∣ E(r) = ∑r
i=1 Σ2

ii/
∑d

i=1 Σ2
ii ≥ δE , 1 ≤ r ≤ d

}
.

6: Set λi = Σ2
ii and ψi = W− 1

2 Ψ̄·,i ∈ Rm for 1 ≤ i ≤ r .
7: else if m � n then
8: Determine Ȳ = W

1
2Y ∈ Rm×n .

9: Compute eigenvalue decomposition [Ψ̄,Λ] = Eig(Ȳ ȲT), where Ȳ ȲT ∈ Rm×m .
10: Compute r = min

{
r ∈ N

∣∣∣ E(r) = ∑r
i=1 Λii/

∑d
i=1 Λii ≥ δE , 1 ≤ r ≤ d

}
.

11: Set λi = Λii and ψi = W− 1
2 Ψ̄·,i ∈ Rm for 1 ≤ i ≤ r .

12: else if n � m then
13: Compute eigenvalue decomposition [Φ̄,Λ] = Eig(YTWY), where YTWY ∈ Rn×n .
14: Compute r = min

{
r ∈ N

∣∣∣ E(r) = ∑r
i=1 Λii/

∑d
i=1 Λii ≥ δE , 1 ≤ r ≤ d

}
.

15: Set λi = Λii and ψi = Y Φ̄·,i/
√
λi ∈ Rm for 1 ≤ i ≤ r .

Chapter 4

The POD for parabolic problems

In this chapter, we will investigate the usage of the proper orthogonal decomposition for reduced order
modelling at the example of a prototypical parabolic partial differential equation, the heat equation.
To build a reduced order model, we need to follow three steps. In the first step, the heat equation needs
to be solved by direct numerical simulation. In this thesis, the Finite Element Method (FEM) with m
degrees of freedom (DoF) yields n solutions ηh,1, . . . ,ηh,n at the time steps t1, ..., tn . These solutions
ηh,i := ηh(ti) are called snapshots and make up the snapshot matrix Y = [ηh,1, ...,ηh,n] ∈ Rm×n . In
the second step, the POD basis in Rm with weighted inner product from Section 3.4 is being computed
from the matrix Y with the method of snapshots, since the number of time steps n is usually much
lower than the number of degrees of freedom m in the spatial FEM discretization. In the third step,
the POD basis is being used to solve a reduced order model with r degrees of freedom, where r � m is
the size of the POD basis. We will refer to this three step process as proper orthogonal decomposition
based reduced order modelling (POD-ROM). The interested reader can find more information on
POD-ROM for parabolic PDEs in [43, 68, 49], [70][Chapter 4] and [26][Chapter 3].

4.1 Model problem and direct numerical simulation

Let Ω ⊂ Rd with d ∈ {1, 2, 3} be a bounded, open domain with Lipschitz boundary ∂Ω. Let
0 < T <∞ be the end time. Let H = L2(Ω) and V = H 1

0 (Ω). Let u0 ∈ H be the initial condi-
tion and f ∈ L2((0,T),H) the right hand side. Then the strong formulation of the heat equation with
homogeneous Dirichlet boundary conditions reads:

Formulation 4.1.1 (Heat equation). Find u : (0,T)× Ω→ R such that

∂tu −∆u = f in (0,T)× Ω,
u = 0 on (0,T)× ∂Ω,

u(0, ·) = u0 in {0} × Ω.

Multiplying from the right hand side with a test function ϕ ∈ V , integrating over the domain Ω and
integrating by parts yields the weak formulation:

Find u ∈W (0,T) := {ϕ ∈ L2((0,T),V) | ∂tϕ ∈ L2((0,T),V ∗)} such that

(∂tu, ϕ) + (∇u,∇ϕ) = (f , ϕ) ∀ϕ ∈ V .

This problem can now be solved with the finite element method by introducing a finite dimensional
subspace Vh = span{ϕh

1 , . . . , ϕ
h
m} ⊂ V . Plugging the finite element ansatz

u(t, xxx) ≈ uh(t, xxx) =
m∑

i=1
ηh

i (t)ϕh
i (xxx)

17

18 CHAPTER 4. THE POD FOR PARABOLIC PROBLEMS

into the weak formulation gives us the vector valued ordinary differential equation (ODE)(
∂tuh , ϕh

i

)
+
(
∇uh ,∇ϕh

i

)
=
(
f , ϕh

i

)
∀1 ≤ i ≤ m,

⇔
m∑

j=1

(
ϕh

j , ϕ
h
i

)
η̇h

j (t) +
m∑

j=1

(
∇ϕh

j ,∇ϕh
i

)
ηh

j (t) =
(
f , ϕh

i

)
∀1 ≤ i ≤ m.

In matrix notation this problem is then equivalent to:

Formulation 4.1.2 (FEM spatial discretization of heat equation).

Mhη̇
h(t) + Shη

h(t) = fff h(t) ∀t ∈ (0,T), (4.1a)
Mhη

h(0) = ηh
0 , (4.1b)

where

(Mh)ij :=
(
ϕh

j , ϕ
h
i

)
for 1 ≤ i, j ≤ m,

(Sh)ij :=
(
∇ϕh

j ,∇ϕh
i

)
for 1 ≤ i, j ≤ m,(

f h(t)
)

i
:=
(
f (t), ϕh

i

)
for 1 ≤ i ≤ m,(

ηh
0

)
i

:=
(
u0, ϕ

h
i

)
for 1 ≤ i ≤ m.

In general, for accurate finite element simulations the number of degrees of freedom m is very large and
multiphysics calculations may take weeks or even a few months on modern supercomputers. There-
fore, the proper orthogonal decomposition, which has been introduced in Chapter 3, now trades off
accuracy for speed by reducing the dimensionality of the problem. It computes a low dimensional basis
{ϕr

i }ri=1 with r � m from snapshots of numerical simulations. This simplifies the ordinary differential
equation (4.1) and leads to an enormous decrease in computation time.

In the following, we will use r as a sub- or superscript for vectors and matrices that arise from reduced
order modelling. We will use h as a sub- or superscript for vectors and matrices that arise from finite
element modelling. When it comes to additional indices, we will use superscripts to indicate the time
step and subscripts for the spatial components.

4.2 Continuous version of POD

Before we take a closer look at how the method of snapshots works in the case of parabolic PDEs, let
us first take a step back and derive the POD minimization problem for time-dependent PDEs from
first principles. Let u ∈ W (0,T) denote the analytical solution to the heat equation (Formulation
4.1.1) and let X = H or X = V . We use the short hand notation u(t) := u(t, ·) and define

V := span{u(t) | t ∈ [0,T]} ⊆ V ⊆ X ,

which may have infinite dimension. Then the aim of the POD is finding a set of functions {ψi}ri=1 ⊂ X
which solve

min
ψ̃1,...,ψ̃r∈X

∫ T

0

∥∥∥u(t)−
r∑

i=1

(
u(t), ψ̃i

)
X
ψ̃i
∥∥∥2

X
dt s.t. (ψ̃i , ψ̃j)X = δij ∀1 ≤ i, j ≤ r . (P̂r

C)

To solve this optimization problem, we first introduce the bounded, compact, non-negative and
self-adjoint operator R : X → V ⊆ X with

Rψ =
∫ T

0
(ψ, u(t))Xu(t) dt for ψ ∈ X .

4.3. DISCRETE VERSION OF POD 19

With the help of the Hilbert-Schmidt theory of compact operators, one can then show that the mini-
mization problem (P̂r

C) is being solved by the first r eigenfunctions {ψi}ri=1 of R with corresponding
eigenvalues {λi}ri=1 [68][Theorem 2.1.5] and we get the error identity∫ T

0

∥∥∥u(t)−
r∑

i=1
(u(t), ψi)X ψi

∥∥∥2

X
dt =

∞∑
i=r+1

λi .

In practice, we are never dealing with the continuous version of the POD but rather with a discrete
setting. Therefore, in the following section we will modify the continuous version of the POD such
that [0,T] is being replaced by a finite set of time steps 0 = t1 < t2 < · · · < tn = T and the infinite
dimensional function space V is being replaced by the finite dimensional subspace Vh .

4.3 Discrete version of POD
In the first step of the derivation of the discrete version of the proper orthogonal decomposition, let
us replace the infinite dimensional function space V by the finite dimensional subspace Vh , which is
the span of the finite element basis functions {ϕh

i }mi=1. Then, we can express functions ψ, φ ∈ Vh as a
linear combination of the finite element basis, i.e.

ψ =
m∑

j=1
ψh

j ϕ
h
j , φ =

m∑
j=1

φh
j ϕ

h
j .

Using this representation of the two functions, (ψ, φ)X simplifies to become a weighted inner product
of their coefficient vectors ψh = (ψh

1 , . . . , ψ
h
m) ∈ Rm and φh = (φh

1 , . . . , φ
h
m) ∈ Rm . In (3.8), we have

shown that in the case X = H it holds that

(ψ, φ) = (ψh)TMhφ
h ,

where Mh ∈ Rm×m is the mass matrix with entries (Mh)ij = (ϕh
j , ϕ

h
i) for 1 ≤ i, j ≤ m. Similarly, in

the case X = V it holds that

(∇ψ,∇φ) = (ψh)TShφ
h ,

where Sh ∈ Rm×m is the stiffness matrix with entries (Sh)ij = (∇ϕh
j ,∇ϕh

i) for 1 ≤ i, j ≤ m. In this
thesis we will only consider POD-ROMs that are based on the L2-inner product (X = H), but there
are some results which demonstrate that the H 1-inner product (X = V) is a viable alternative for
fluid dynamics problems and yields better results for turbulent flows [38].

In the next step, let us now approximate the integral over the time interval [0,T]. In practice, we
don’t know the solution u(t) for all times t ∈ [0,T], but only have access to the snapshots ui = u(ti)
of the solution for the time steps 0 = t1 < t2 < · · · < tn = T . Therefore, we approximate the integral
from 0 to T by a quadrature formula with quadrature weights {αi}ni=1 and quadrature points {ti}ni=1.

Let {ηh,i}ni=1 ⊂ Rm denote the snapshots from the finite element simulations. We again set
V = span{ηh,i | 1 ≤ i ≤ n} with d = dimV ≤ min(m,n). Due to the previous derivations, the discrete
version of the optimization problem (P̂r

C) reads

min
ψ̃1,...,ψ̃r∈Rm

n∑
j=1

αj
∥∥∥ηh,j −

r∑
i=1

(
ηh,j , ψ̃i

)
W
ψ̃i
∥∥∥2

W
s.t. (ψ̃i , ψ̃j)W = δij ∀1 ≤ i, j ≤ r , (P̂r

D)

where as mentioned before the weight matrix W depends on the choice of the function space X ,
namely

W =
{
Mh for X = H ,
Sh for X = V .

20 CHAPTER 4. THE POD FOR PARABOLIC PROBLEMS

As in the continuous setting, we define the linear, bounded, non-negative and self-adjoint operator
Rh,n : Rm → Rm with

Rh,nψ =
n∑

j=1
αj
(
ηh,j ,ψ

)
W
ηh,j for ψ ∈ Rm .

The minimization problem (P̂r
D) is being solved by the first r eigenvectors {ψi}ri=1 ⊂ Rm of Rh,n with

corresponding eigenvalues {λi}ri=1 and the POD approximation error satisfies the formula
n∑

j=1
αj
∥∥∥ηh,j −

r∑
i=1

(
ηh,j ,ψi

)
W
ψi
∥∥∥2

W
=

n∑
i=r+1

λi . (4.2)

In the special case where αj = 1 for all the weights αj , the discrete version of the POD simplifies to
the problem statement from Section 3.4. Otherwise we need to slightly modify Algorithm 2. For this
purpose, we define the diagonal matrix D = diag(α1, . . . , αn) ∈ Rn×n .

Algorithm 3 POD basis for parabolic PDE
Input: Snapshots {ηh,i}ni=1 ⊂ Rm , threshold δE ∈ [0, 1], symmetric, positive definite matrix
W ∈ Rm×m and diagonal matrix D ∈ Rn×n containing the quadrature weights.
Output: POD basis {ψi}ri=1 ⊂ Rm and eigenvalues {λi}ri=1.

1: Set Y = [ηh,1, . . . ,ηh,n] ∈ Rm×n .
2: if m ≈ n then
3: Determine Ȳ = W

1
2YD

1
2 ∈ Rm×n .

4: Compute singular value decomposition [Ψ̄,Σ, Φ̄] = SVD(Ȳ).
5: Compute r = min

{
r ∈ N

∣∣∣ E(r) = ∑r
i=1 Σ2

ii/
∑d

i=1 Σ2
ii ≥ δE , 1 ≤ r ≤ d

}
.

6: Set λi = Σ2
ii and ψi = W− 1

2 Ψ̄·,i ∈ Rm for 1 ≤ i ≤ r .
7: else if m � n then
8: Determine Ȳ = W

1
2YD

1
2 ∈ Rm×n .

9: Compute eigenvalue decomposition [Ψ̄,Λ] = Eig(Ȳ ȲT), where Ȳ ȲT ∈ Rm×m .
10: Compute r = min

{
r ∈ N

∣∣∣ E(r) = ∑r
i=1 Λii/

∑d
i=1 Λii ≥ δE , 1 ≤ r ≤ d

}
.

11: Set λi = Λii and ψi = W− 1
2 Ψ̄·,i ∈ Rm for 1 ≤ i ≤ r .

12: else if n � m then
13: Compute eigenvalue decomposition [Φ̄,Λ] = Eig(D 1

2YTWYD
1
2), where D 1

2YTWYD
1
2 ∈ Rn×n .

14: Compute r = min
{
r ∈ N

∣∣∣ E(r) = ∑r
i=1 Λii/

∑d
i=1 Λii ≥ δE , 1 ≤ r ≤ d

}
.

15: Set λi = Λii and ψi = YD
1
2 Φ̄·,i/

√
λi ∈ Rm for 1 ≤ i ≤ r .

4.4 Practical considerations for POD computation
Now that we have built a theoretical framework around the proper orthogonal decomposition, let us
discuss how Algorithm 3 is implemented in practice. Often all snapshots cannot be loaded at once
into memory to perform a singular value decomposition of a Rm×n matrix. Therefore, when using the
proper orthogonal method in computational fluid mechanics, we instead compute the eigenvalues of
the correlation matrix, a Rn×n matrix. The number of time steps n is usually a few orders smaller
than the number of degrees freedom m, i.e. we have n � m, which makes the method of snapshots
(3.7) very efficient. Hence, in reduced order modelling software, we almost always only consider the
case n � m from Algorithm 3. The only modification is that we compute the correlation matrix

C = D
1
2YTWYD

1
2

elementwise and often don’t assemble the snapshot matrix Y explicitly. Instead the entries of the
correlation matrix are being determined by

Cij = Cji = √αi
√
αj(ηh,j)TMhη

h,i = √αi
√
αj
(
uh,j , uh,i

)
L2(Ω)

for 1 ≤ i, j ≤ n.

4.5. REDUCED ORDER MODELLING 21

The eigenvectors φ̄1, . . . , φ̄n and eigenvalues λ1, . . . , λn of the correlation matrix, as well as the size r
of the POD basis are being computed as described in Algorithm 3. Finally, the POD modes can be
calculated by

ψi = 1√
λi

n∑
j=1

√
αj
(
φ̄i
)

j
ηh,j for 1 ≤ i ≤ r . (4.3)

In case that the number of snapshots n gets too large, even the computation of all eigenvalues and
eigenvectors might become infeasible. Then it is also sufficient to compute the first r eigenvectors and
eigenvalues of the correlation matrix with an iterative method. In Algorithm 3, we only needed the
eigenvectors λr+1, . . . λn to evaluate E(r) and with this find the optimal POD basis size r . However,
we can instead use the POD error representation (4.2), which for the special case r = 0 reads

n∑
j=1

αj
∥∥ηh,j∥∥2

W =
n∑

i=1
λi .

Using this formula, the energy ratio can be calculated by

E(r) =
∑r

i=1 λi∑n
i=1 λi

=
∑r

i=1 λi∑n
j=1 αj

∥∥ηh,j
∥∥2

W

, (4.4)

which doesn’t require the explicit knowledge of the remaining eigenvalues λr+1, . . . λn anymore.

In equation (4.3), it can be observed that the POD vectors are just linear combinations of the snap-
shots. Therefore, the POD vectors will by construction satisfy homogeneous boundary conditions, if
they are being satisfied by the snapshots. Additionally, they will automatically fulfill any incompress-
ibility condition that the snapshots possess. This is not true anymore when dealing with inhomoge-
neous boundary conditions. If the inhomogeneous Dirichlet boundary conditions don’t depend on the
time, then the inhomogeneous Dirichlet boundary conditions can be subtracted from the snapshots
before computing the POD basis. Then by construction the POD solution will satisfy the correct
boundary conditions. In fluid mechanics, this is often done by a centering approach, where one first
computes the mean η̄h = 1

n
∑n

i=1 η
h,i and the mean flow ūuu(xxx) = ∑m

i=1 η̄
h
i ϕ

h
i (xxx), such that one can use

the ansatz

uuur(t, xxx) = ūuu(xxx) +
r∑

i=1
ηr

i (t)ψi(xxx)

for reduced order modelling. However, in the case of the heat equation we have homogeneous Dirichlet
boundary conditions. Therefore, we instead use the non-centered ansatz

ur(t, xxx) =
r∑

i=1
ηr

i (t)ψi(xxx). (4.5)

4.5 Reduced order modelling
In the first step, we computed the FEM solution of a time discretized version of the heat equation
(4.1). In the second step, we calculated the POD modes {ψi}ri=1 from the snapshots of the finite
element simulation. Now we want to use the POD basis and ansatz (4.5) to create a reduced order
model that is computationally much easier to solve than its FEM counterpart. Following the same
steps as in Section 4.1, the POD-ROM ansatz (4.5) yields the following spatially discretized version
of the heat equation.

Formulation 4.5.1 (POD-ROM spatial discretization of heat equation).

Mr η̇
r(t) + Srη

r(t) = fff r(t) ∀t ∈ (0,T) (4.6a)
Mrη

r(0) = ηr
0 (4.6b)

22 CHAPTER 4. THE POD FOR PARABOLIC PROBLEMS

where

(Mr)ij := (ψj , ψi) for 1 ≤ i, j ≤ r ,
(Sr)ij := (∇ψj ,∇ψi) for 1 ≤ i, j ≤ r ,

(f r(t))i := (f (t), ψi) for 1 ≤ i ≤ r ,
(ηr

0)i := (u0, ψi) for 1 ≤ i ≤ r .

To solve Formulation 4.5.1, we now only need to discretize the time derivative, which can be can done
with e.g. the One-Step-θ scheme. We then have a fully discretized POD-ROM problem.

Formulation 4.5.2 (POD-ROM discretization of heat equation). Find {ηr ,i}ni=1 ⊂ Rr such that

(Mr + kiθSr)ηr ,i = (Mr − ki(1− θ)Sr)ηr ,i−1 + kiθfff r ,i + ki(1− θ)fff r ,i−1 for 2 ≤ i ≤ n, (4.7)

where ki := ti−ti−1 denotes the time step size and we have the same initial conditions as in Formulation
4.5.1.

We have thus reduced the dimension of the ordinary differential equation that we need to solve from an
n dimensional problem (4.1) to an r dimensional problem (4.6) with the help of the proper orthogonal
decomposition. In the process, we needed to compute the POD basis and one might ask whether this
additional computational effort can be justified by a faster computation time of (4.7) in comparison to
traditional finite element simulations. The answer to this question depends on whether the dynamics
of the differential equation can be reduced to a lower dimensional manifold, i.e. is r � m? This
question needs to be answered for each problem separately, but it is straightforward to check whether
POD-ROM is reasonable for a given PDE. One simply has to compute a few snapshots from a direct
numerical simulation of the full order system. With the proper orthogonal decomposition, one then
needs to compute the singular values of the snapshot matrix and verify that they decay rapidly. If
this is the case, then the dynamics of the underlying PDE can be approximated accurately by only a
few modes. But the fast decay of the singular values might be violated, e.g. in the case of the one-
dimensional linear transport equation [45], and in that case reduced order modelling is not useful. In
practice, if the singular values decay rapidly, we already get good POD-ROM results for 10 ≤ r ≤ 100
[45].

Finally, we should also mention how the reduced matrices Mr and Sr and the reduced vectors {fff r ,i}ni=1
can be computed efficiently. Since the main goal of reduced order modelling is computational efficiency,
we use an offline/online splitting. In the offline stage, we compute the POD basis and all time-
independent components of the linear equation system (4.7). In the online stage, all components
that depend on the time are being computed and we solve the linear equation system. Note that
in the online stage one should avoid computations which are of full order, i.e. of order m, since
in reduced order modelling we try to transform our computations into the the lower dimensional
space of dimension r � m. In the offline stage, we first store all POD basis vectors in the matrix
Ψ = [ψ1, . . . ,ψr] ∈ Rm×r and then compute the reduced matrices by

Mr = ΨTMhΨ,
Sr = ΨTShΨ.

The only thing that is not straightforward is how we should deal with the reduced vectors {fff r ,i}ni=1.
Since the function f depends on time, we most likely need to determine these reduced vectors in every
step of the online stage, when we solve (4.7). If f (t, xxx) is seperable, i.e.

f (t, xxx) = γ(t)g(xxx) or f (t, xxx) =
l∑

j=1
γj(t)gj(xxx),

we can compute the L2-scalar products (g, ϕh
i) for 1 ≤ i ≤ m or (gj , ϕ

h
i) for 1 ≤ i ≤ m, 1 ≤ j ≤ l in

the offline stage and in the online stage simply restrict them to the POD space with the help of Ψ

4.6. NUMERICAL RESULTS 23

and multiply with γ(ti) [26]. In the general case where f (t, x) is not separable, the reduced vectors
{fff r ,i}ni=1 need to be assembled in the online stage and are given by

fff r ,i = ΨT fff h,i ,

where

fff h,i :=

 (f (ti), ϕh
1)

...
(f (ti), ϕh

m)

 ∈ Rm .

4.6 Numerical results
For the numerical experiments of reduced order modelling of the heat equation, we will consider the
testcase from step 26 of the deal.II tutorials [20]. We solve the heat equation (Formulation 4.1.1) on
the L-shaped domain Ω = (−1, 1)2 \ (0, 1)2 with homogeneous Dirichlet boundary conditions and zero
initial conditions. We define the right hand side to be

f (t, xxx) :=


χ(0.5,1)×(−0.5,0)(xxx) for t mod 0.2

0.2 ∈ [0, 0.2],
χ(−0.5,0)×(0.5,1)(xxx) for t mod 0.2

0.2 ∈ [0.5, 0.7],
0 else,

where χA denotes the indicator function of the set A ⊂ Ω, i.e.

χA(xxx) =
{

1 for xxx ∈ A,
0 for xxx ∈ Ω \A.

From a physical point of view, this problem statement corresponds to square shaped heat sources,
which are located in two corners of the L-shape. One then alternates to turn on each heat source.
After heating, the temperature then diffuses again. We have zero temperature (0 K) at the beginning
of the simulation and at the boundary of the L-shape.

4.6.1 FEM results

For the finite element simulations, the L-shape has been globally refined 7 times, yielding 49,665
degrees of freedom when using linear finite elements. The final time was 0.5 and the time step size
was 0.002, giving us a total of 251 snapshots. We chose θ = 1

2 , which gave us the Crank-Nicholson
scheme for the discretization of the time derivative. Each time step has been solved with the conjugate
gradient (CG) method with symmetric successive overrelaxation (SSOR) preconditioner. The following
computations have been done on an AMD Ryzen 7 2700X with 16 GB RAM.

(a) Snapshot with first peak (t = 0.038) (b) Snapshot with second peak (t = 0.138)

Figure 4.1: Snapshots of the FEM solution of the heat equation

24 CHAPTER 4. THE POD FOR PARABOLIC PROBLEMS

4.6.2 POD resuts

Next, the proper orthogonal decomposition has been applied to the correlation matrix that has been
built from the snapshots of the FEM simulation. The total energy of the problem, i.e. the sum of the
eigenvalues of the correlation matrix, is 1.19493303075 · 10−5. Now, let us take a look at the largest
eigenvalues of the correlation matrix to assess whether they decay quickly. If this is the case, proper
orthogonal decomposition based reduced order modelling is computationally efficient.

2 4 6 8 10 12 14
10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

Figure 4.2: First 15 largest eigenvalues of the correlation matrix of the heat equation

In Figure 4.2, we can observe when looking at the 15 largest eigenvalues that the eigenvalues of the
correlation matrix decay rapidly, e.g. there are more than 6 orders of magnitude between the largest
and the 15th largest eigenvalue. Therefore, it makes sense to use the POD for reduced order modelling.
We will now analyze the first 10 largest eigenvalues, their partial energies, which are the sum of the
first r eigenvalues, and their energy ratios (see (4.4)), where

energy ratio = partial energy
total energy .

POD size i.th eigenvalue Partial energy Energy ratio
1 7.292 · 10−6 7.292 · 10−6 61.02 %
2 4.028 · 10−6 1.132 · 10−5 94.73 %
3 3.368 · 10−7 1.166 · 10−5 97.55 %
4 2.607 · 10−7 1.192 · 10−5 99.73 %
5 2.179 · 10−8 1.1939 · 10−5 99.92 %
6 7.049 · 10−9 1.1946 · 10−5 99.98 %
7 1.762 · 10−9 1.1948 · 10−5 99.990 %
8 8.543 · 10−10 1.19490 · 10−5 99.998 %
9 2.174 · 10−10 1.194925 · 10−5 99.9993 %
10 4.281 · 10−11 1.194929 · 10−5 99.9997 %

Figure 4.3: Comparison of the first 10 largest eigenvalues, their partial energies and their energy ratios
for the heat equation

In Figure 4.3, we see that the partial energies are a good approximation to the total energy, even for
less than 10 POD vectors, and that the energy ratios converge quickly to 100 %. Remember that in our
simulations, we used a finite element basis of size 49,665. With the proper orthogonal decomposition,
we discovered that we can reduce the size of the basis to less than 10 basis functions and still preserve

4.6. NUMERICAL RESULTS 25

the majority of the energy.

What is a good choice for the POD basis size? One could either choose a fixed size of POD basis or
what is usually done in practice, one could increase the size of the POD basis until the energy ratio is
bigger than some threshold δE , e.g. δE = 99 %. The latter approach has also been used in Algorithm 3.
We will now investigate how the size of the POD basis depends on the choice of the threshold δE .

δE POD size Energy ratio
90 % 2 94.73 %
95 % 3 97.55 %
99 % 4 99.73 %
99.9 % 5 99.92 %
99.99 % 7 99.990 %
99.999 % 9 99.9993 %

Figure 4.4: Size of the POD basis dependent on the threshold δE for the energy ratio

In Figure 4.4, we see that depending on the choice for the threshold δE for the energy ratio, only very
few POD modes are needed to reach the desired energy ratio, e.g. for δE = 90 % we need 2 basis
vectors and for δE = 99 % we need 4 basis vectors. Let us therefore take a look at the first four POD
modes.

(a) First mode (b) Second mode

(c) Third mode (d) Fourth mode

Figure 4.5: First four POD modes of the heat equation

From the finite element simulations we know that the solution to our heat equation problem has two
peaks which alternately rise and dissipate. Therefore, we would expect to only have two POD modes,
which each represent one of the peaks. However, the first two POD modes capture one of the peaks
and additionally have a small contribution of the other peak. Nevertheless, these two basis vectors
already capture around 95 % of the energy ratio. Therefore, the remaining POD vectors don’t play a
big role anymore. This can be seen at the example of the third and fourth POD modes, which are only

26 CHAPTER 4. THE POD FOR PARABOLIC PROBLEMS

nonzero near the peaks from the finite element solution, but don’t carry a lot of information about
the dynamics of the system anymore.

4.6.3 POD-ROM results

Finally, we need to compare the efficiency of the finite element method with proper orthogonal de-
composition based reduced order modelling. The direct numerical solver (FEM) took 13.459 seconds
for the computations. We will now compare this to the computation times of the POD-ROM method
for different sizes of the POD basis. Each time step has been solved with a direct solver.

POD size Absolute time Relative time Error
1 1.092 s 8.11 % 4.66 · 10−6

2 1.082 s 8.04 % 6.29 · 10−7

3 1.109 s 8.24 % 2.92 · 10−7

4 1.122 s 8.34 % 3.18 · 10−8

5 1.162 s 8.63 % 9.96 · 10−9

6 1.149 s 8.54 % 2.91 · 10−9

7 1.155 s 8.58 % 1.15 · 10−9

8 1.175 s 8.73 % 2.98 · 10−10

9 1.189 s 8.83 % 8.02 · 10−11

10 1.201 s 8.92 % 3.74 · 10−11

Figure 4.6: Comparison of FEM simulation times with computation time of POD-ROM depending on
the size of the POD basis

In Figure 4.6, the absolute time denotes the total computation time for determining the POD basis
vectors and using them for reduced order modelling. Relative time is the quotient of the absolute
time of the POD-ROM method and the computation time for the finite element simulation. The
error between the finite element snapshots and the snapshots from the reduced order model has been
derived from (P̂r

D) and is given by
n∑

j=1
αj
∥∥∥ηh,j −

r∑
i=1

ηr ,j
i ψi

∥∥∥2

W
=

n∑
i=r+1

λi ,

where ηr ,j
i := ηr

i (tj). Since we are using the trapezoidal rule for the quadrature of the time integral
and the time step size k is constant, the quadrature weights αj read

αj =
{ 1

k for 1 < j < n,
1
2k for j ∈ {1,n}.

Overall, we can see in Figure 4.6 that a bigger POD basis leads to a slight increase in computation
time and that the error between the finite element solution and its proper orthogonal decomposition
based approximation decays rapidly. In our simulations the POD-ROM method took only between
8.04 % and 8.92 % of the computation time of the finite element simulation. This means that in
our numerical experiments reduced order modelling is on average 11.77 times faster then the direct
numerical simulation of the heat equation with the finite element method.

Chapter 5

The FEM for the Navier-Stokes
equations

In this chapter, we will investigate the finite elemtent simulations of the Navier-Stokes equations.
We start by introducing the strong formulation of the Navier-Stokes equations. Next, we describe
the Navier-Stokes 2D-2 benchmark from Schäfer/Turek [61], its problem statement and quantities of
interest. Afterwards, we discuss the finite element spaces, which can be used for the fluid velocity
and pressure. Therein, we point out that for these function spaces the inf-sup condition needs to be
satisfied. Multiplying the Navier-Stokes equations with test functions, integrating by parts over Ω and
applying the boundary conditions, we then arrive at the nonlinear weak formulation A(UUU)(Ψ) = F(Ψ).
We then continue by deriving the Newton method for this nonlinear problem. Finally, we conclude
with a discussion of the numerical results from the finite element computations. A classical numerical
analysis book on the topic of the Navier-Stokes equations is [27]. The interested reader can find
more information on the finite element analysis of the Navier-Stokes equations in [58] and [71]. An
implementation in the finite element software deal.II [2] with a similar problem statement has been
presented in [13].

5.1 The Navier-Stokes equations

Starting from physical conservation laws, namely the conservation of mass and the conservation of
momentum, Reynolds’ transport theorem demonstrates that incompressible, viscous fluid flow with
constant density and temperature can be modeled by the Navier-Stokes equations

ρ∂tvvv −∇ · σ + ρ(vvv · ∇)vvv = 0,
∇ · vvv = 0.

From conservation of angular momentum, it follows that the Cauchy stress tensor of an incompressible
Newtonian fluid

σ = −pI + µ(∇vvv +∇vvvT)

needs to be symmetric. Plugging the definition of the stress tensor into the Navier-Stokes equations
leads to the following formulation:

Formulation 5.1.1 (Navier-Stokes equations). Find the vector-valued velocity vvv : (0,T) × Ω → Rd

with d ∈ {2, 3} and the scalar-valued pressure p : (0,T)× Ω→ R such that

ρ∂tvvv +∇p − µ∇ · (∇vvv +∇vvvT) + ρ(vvv · ∇)vvv = 0, (5.1a)
∇ · vvv = 0. (5.1b)

Here, ρ denotes the fluid density, ν is the kinematic viscosity and µ = ρν defines the dynamic viscosity.

27

28 CHAPTER 5. THE FEM FOR THE NAVIER-STOKES EQUATIONS

5.1.1 Reynolds number

The Reynolds number is a dimensionless number, which characterizes the type of fluid flow.

Definition 5.1.2 (Reynolds number). The Reynolds number is defined as

Re := LV
ν

= ρLV
µ

,

where L is a characteristic length and V is a characteristic velocity.

For Reynolds numbers between 1 and 105 the fluid flow is laminar [58] and for large Reynolds numbers
the flow becomes turbulent (chaotic).

5.2 Problem setup of the Navier-Stokes benchmark
For our numerical simulations, we consider the test case 2D-2 from the Schäfer/Turek Navier-Stokes
benchmarks [61]. The 2D-2 benchmark problem describes the two dimensional laminar flow around a
circular cylinder, where the fluid flow is nonstationary but when it is fully developed becomes periodic.
In the following figure, the domain Ω and the different boundary components Γin, Γout, Γwall and Γcircle
are depicted.

Γcircle ΩΓin Γout

Γwall

Γwall(0, 0)

(0, 0.41)

(2.2, 0)

(2.2, 0.41)

Figure 5.1: Domain of the Navier-Stokes benchmark problem

The parameters of the benchmark configuation are listed in the next table.

parameter symbol value
kinematic viscosity ν 10−3 m2/s
fluid density ρ 1 kg/m3

height of pipe h 0.41 m
diameter of circle d 0.1 m

Figure 5.2: Parameters of the Navier-Stokes benchmark problem

The domain is defined as Ω := (0, 2.2)× (0, 0.41) \ Br(0.2, 0.2) with r = 0.05, where Br(x, y) denotes
the ball around (x, y) with radius r . On the boundary ∂Ω we prescribe Dirichlet and Neumann
boundary conditions. We apply the no-slip condition, i.e. homogeneous Dirichlet boundary conditions
vvv = 0 on Γwall ∪ Γcircle, where Γwall = (0, 2.2)× {0} ∪ (0, 2.2)× {0.41} and Γcircle = ∂Br(0.2, 0.2). On
the boundary Γin = {0} × (0, 0.41), we enforce a steady parabolic inflow profile, which is a type of
inhomogeneous Dirichlet boundary conditions, i.e. vvv = ggg on Γin. For the 2D-2 benchmark the inflow
parabola is given by

ggg(0, y) =
(

4vmaxy(h−y)
h2

0

)
,

5.3. FINITE ELEMENT SPACES 29

with maximum velocity vmax = 1.5 m/s. The ouflow boundary Γout = {2.2} × (0, 0.41) has Neumann
boundary conditions. It has been discussed in [31] and was also shown in [71] that the do-nothing
condition σ · nnn = 0 on Γout leads to an incorrect outflow profile of the pressure. Hence, instead we
work with the modified do-nothing condition µ∂nvvv − pnnn = 0 on Γout.

In our benchmark problem, the characteristic length is the diameter of the circle, i.e. L := d = 0.1 m,
and the characteristic velocity is the mean velocity in x-direction on the inflow boundary,
i.e. V (t) = v̄x(t) = 1 m/s, since

v̄x(t) := 1
h

∫ h

0
vx

(
t,
(

0
y

))
dy = 1

h

∫ h

0
gx(0, y) dy

= 1
h

∫ h

0

6 m/s · y(h − y)
h2 dy = 1 m/s.

Overall, we have thus shown that the Reynolds number of our problem statement is

Re = LV
ν

= dv̄x
ν

= 0.1 m · 1 m/s
10−3 m2/s

= 100.

For the benchmark problem, the quantities of interest are the drag and the lift coefficients (CD and
CL), as well as the Strouhal number (St) and the pressure difference (∆p). The drag force FD and
the lift force FL can be computed by a line integral over the boundary of the circle, namely(

FD
FL

)
=
∫

Γcircle
σ · nnn ds.

Then, the drag and lift coefficients are given by

CD = 2FD
ρdv̄2

x
and CL = 2FL

ρdv̄2
x
.

The Strouhal number St is defined as

St = df
v̄2

x
,

where f is the frequency of the flow. For t ≥ 25 s the fluid flow is fully developed and time-periodic with
period 1/f ≈ 0.33 s. The period can be determined programmatically by measuring the time between
two consecutive maxima of the lift coefficient. The pressure difference is the difference between the
pressure on the front and back of the circle, i.e.

∆p := p(0.15, 0.2)− p(0.25, 0.2).

5.3 Finite element spaces
The Navier-Stokes equations are an example of a mixed system. In contrast to the heat equation, we
now don’t need to find an appropriate function space for only one solution variable, but we need to
construct function spaces for the fluid velocity vvv and for the fluid pressure p. Similar to the treatment
of the heat equation, after integration by parts the highest derivative of the fluid velocity will be its
gradient. We thus only require vvv ∈ [H 1(Ω)]2. For the fluid pressure, we require even lower regularity.
After integration by parts, it suffices that the pressure is square integrable, i.e. p ∈ L2(Ω). We need
to account for Dirichlet boundary conditions in the function space, hence we choose

V v := {vvv ∈ [H 1(Ω)]2 | vvv = 0 on Γin ∪ Γwall ∪ Γcircle}.

We prescribe homogeneous Neumann boundary conditions for the pressure on ∂Ω and thus work with

V p := L2(Ω),

30 CHAPTER 5. THE FEM FOR THE NAVIER-STOKES EQUATIONS

since the do-nothing condition implicitly normalizes the pressure to give a unique solution [31, 58].

For the uniqueness of the pressure solution, the inf-sup or Ladyzhenskaya-Babuska-Brezzi (LBB) con-
dition

inf
q∈V p

sup
ϕ∈V v

(q,∇ · ϕ)
‖q‖L2(Ω)‖ϕ‖H1(Ω)

≥ γ > 0

needs to be satisfied. This stability estimate still needs to be fulfilled when V p and V v are being
replaced by the finite element spaces V p

h ⊂ V p and V v
h ⊂ V v . In practice this means that the velocity

space needs to be sufficiently larger than the pressure space, e.g. one cannot use linear finite elements
for the velocity and the pressure, since this leads to artificial oscillations in the pressure [71].

A popular finite element discretization of mixed elements that satisfies the inf-sup condition is the
Taylor-Hood element Q2×Q1. This has been proven e.g. in [27][Corollary 4.1]. With the Taylor-Hood
element, the fluid velocity is being approximated by quadratic finite elements and the fluid pressure
is being solved with linear finite elements.

vvv

p

Figure 5.3: Degrees of freedom of the Taylor-Hood element

In Figure 5.3, the degrees of freedom of the quadratic finite elements for the velocity have been
marked with blue dots and the degrees of freedom of the linear finite elements for the pressure have
been marked with green crosses.

5.4 Weak formulation
To derive the weak formulation of the Navier-Stokes equations, we multiply equations (5.1) by test
functions ψv ∈ V v and ψp ∈ V p respectively, and integrate over the domain Ω.

Find {vvv, p} ∈ {ggg + V v} ×V p such that the initial conditions are satisfied
and for almost all time steps t ∈ (0,T) it holds that

ρ(∂tvvv,ψv) +
(
∇p − µ∇ · (∇vvv +∇vvvT),ψv

)
+ ρ ((vvv · ∇)vvv,ψv) = 0 (5.2)

(∇ · vvv,ψp) = 0 (5.3)

Next, using integration by parts and the fact that ψv satisfies homogeneous Dirichlet boundary con-
ditions on ∂Ω \ Γout, we get that

ρ(∂tvvv,ψv) + µ
(
∇vvv +∇vvvT ,∇ψv)− (p,∇ ·ψv)−

∫
Γout

[
µ(∇vvv +∇vvvT) · nnn − pnnn

]
·ψv ds + ρ ((vvv · ∇)vvv,ψv) = 0.

Using the ‘modified‘ do-nothing condition [31]

µ∇vvv · nnn − pnnn = 0,

the weak form simplifies to

ρ(∂tvvv,ψv) + µ
(
∇vvv +∇vvvT ,∇ψv)− (p,∇ ·ψv)−

∫
Γout

[
µ∇vvvT · nnn

]
·ψv ds + ρ ((vvv · ∇)vvv,ψv) = 0. (5.4)

5.5. SOLUTION OF THE WEAK FORMULATION WITH NEWTON’S METHOD 31

Discretizing the time derivative with the One-Step-θ scheme and adding equations (5.3) and (5.4),
we get the semi-linear form

A(UUU)(Ψ) := ρ(vvv,ψv) + kθµ
(
∇vvv +∇vvvT ,∇ψv

)
− kθ(p,∇ ·ψv) (5.5)

− kθ
∫

Γout

[
µ∇vvvT · nnn

]
·ψv ds + kθρ ((vvv · ∇)vvv,ψv) + k(∇ · vvv, ψp)

and the right hand side functional

F(Ψ) := ρ(vvvn−1,ψv)− k(1− θ)µ
(
∇vvvn−1 +∇vvvn−1T

,∇ψv
)

+ k(1− θ)(pn−1,∇ ·ψv) (5.6)

+ k(1− θ)
∫

Γout

[
µ∇vvvn−1T · nnn

]
·ψv ds − k(1− θ)ρ

(
(vvvn−1 · ∇)vvvn−1,ψv

)
,

where UUU := {vvv, p} ∈ {ggg + V v} × V p and Ψ := {ψv , ψp} ∈ V v × V p. Here, we used the notation
vvv := vvvn and p := pn for solutions that need to be computed in the current time step and vvvn−1 and
pn−1 for solutions from the last time step, which already have been computed. In the implementation
the pressure term is treated fully implicitly, i.e. we have the term −k(p,∇ · ψv) in the semi-linear
form and (pn−1,∇ ·ψv) doesn’t arise in the right hand side anymore.

5.5 Solution of the weak formulation with Newton’s method
To solve the nonlinear problem A(UUU)(Ψ) = F(Ψ), we can first reformulate it as a root finding problem,
where we are trying to find a root of the residual F(Ψ)−A(UUU)(Ψ). From introductions to numerical
analysis [60] and finite element analysis courses [72], it is known that such variational root finding
problems can be solved by Newton’s method. Therein, in a step of the residual-based Newton’s method
one needs to solve the problem: Find δUUU := {δvvv, δp} ∈ V v ×V p such that

A′(UUU)(δUUU ,Ψ) = −A(UUU)(Ψ) + F(Ψ) ∀Ψ ∈ V v ×V p.

Hence, we now need to compute the Fréchet derivative of the semi-linear form A(UUU)(Ψ) with respect
to UUU in the direction of δUUU . Note that for a linear functional f : V v → V v the Frechét derivative is
given by

f ′(vvv)(δvvv) = f (δvvv),

due to the linearity of f . Hence, it only remains to compute the Frechét derivative of

f : V v → V v , vvv 7→ (vvv · ∇)vvv.

We have that

f (vvv + h δvvv) = ((vvv + h δvvv) · ∇) (vvv + h δvvv)
= (vvv · ∇)vvv + h [(δvvv · ∇)vvv + (vvv · ∇)δvvv] + h2(δvvv · ∇)δvvv.

We observe that the first term is f (vvv) and the last term is quadratic in h. Hence, the Frechét derivative
reads

f ′(vvv)(δvvv) = (δvvv · ∇)vvv + (vvv · ∇)δvvv.

The derivative of the semi-linear form is thus given by

A′(UUU)(δUUU ,Ψ) := ρ(δvvv,ψv) + kθµ
(
∇δvvv +∇δvvvT ,∇ψv

)
− kθ(δp,∇ ·ψv)

−kθ
∫

Γout

[
µ∇δvvvT · nnn

]
·ψv ds + kθρ ((δvvv · ∇)vvv + (vvv · ∇)δvvv,ψv) + k(∇ · δvvv, ψp).

32 CHAPTER 5. THE FEM FOR THE NAVIER-STOKES EQUATIONS

Finally, we can formulate the full algorithm of Newton’s method, which we will use for the numerical
experiments.

Algorithm 4 Residual-based Newton method with backtracking line search
Input: Initial guess UUU n,0

h ∈ {ggg + V v
h } ×V p

h
Output: FEM solution UUU n

h ∈ {ggg + V v
h } ×V p

h at time tn .
1: for j = 0, 1, 2, ... do
2: Find δUUU n

h ∈ V v
h ×V p

h such that

A′(UUU n,j
h)(δUUU n

h ,Ψh) = −A(UUU n,j
h)(Ψh) + F(Ψh) ∀Ψh ∈ V v

h ×V p
h ,

UUU n,j+1
h = UUU n,j

h + δUUU n
h .

3: Check convergence criterion

‖R(UUU n,j+1
h)‖∞ ≤ ‖R(UUU n,j

h)‖∞, (5.7)

where

‖R(UUU n,j
h)‖∞ := max

i∈[1,dim Xh]

∣∣∣F(Ψi)−A(UUU n,j
h)(Ψi)

∣∣∣ .
4: if (5.7) is violated then
5: Compute for k = 1, . . . , kmax a new solution . line search

UUU n,j+1
h = UUU n,j

h + λk δUUU n
h

until (5.7) is fulfilled.
6: if (5.7) is fulfilled then
7: Check the stopping criterion

‖R(UUU n,j+1
h)‖∞ ≤ TOL. (5.8)

8: if (5.8) is fulfilled then
9: UUU n

h := UUU n,j+1
h .

10: else
11: j → j + 1 and go to 2.

For the numerical tests, we used kmax = 10 as the maximum number of line search steps and λ = 0.6
as the line search damping parameter. We set the maximum number of Newton steps to 10 and the
tolerance TOL to 10−16.

Since we are dealing with a time-dependent problem, the initial guess can be chosen as the solution
from the last time step, i.e.

U n,0
h := U n−1

h .

We then need to prescribe the non-homogeneous Dirichlet conditions representing the parabolic inflow
on this initial guess, as well as the homogeneous Dirichlet conditions on Γwall. However, the bound-
ary conditions for the update δUUU n

h become homogeneous, i.e. we enforce δUUU n
h = 0 on Γin∪Γwall∪Γcircle.

We observe that in Algorithm 4 we need to compute the directional derivative A′(UUU n,j
h)(δUUU n

h ,Ψh) in
each step of the Newton method. This is computationally expensive, since we need to assemble the
Jacobian matrix in every step. Instead, in our program we used the approximation

A′(UUU n,j+1
h)(·,Ψh) ≈ A′(UUU n,j

h)(·,Ψh),

5.6. NUMERICAL RESULTS 33

when the reduction rate

θj := ‖R(UUU n,j+1
h)‖∞

‖R(UUU n,j
h)‖∞

was sufficiently small. We used these so called simplified-Newton steps, when θj ≤ θmax := 0.1.

5.6 Numerical results
For the finite element simulations, the input mesh has been refined globally 3 times. This resulted
in 2,560 cells, 21,024 degrees of freedom for the fluid velocity and 2,696 degrees of freedom for the
pressure. In total, there have been 23,720 degrees of freedom in the FEM simulation. Until the initial
solution of the flow has developed, we used a coarser time step size of 0.05 s from t = 0 s to t = 3.5 s.
Thereafter, the finer time step size 0.005 s has been used until the final time t = 35 s. This gave
us a total of 6,372 snapshots. We chose θ = 1

2 , which gave us the Crank-Nicholson scheme for the
discretization of the time derivative. Each time step has been solved with the sparse direct solver
UMFPACK. The following computations have been done on an AMD Ryzen 7 2700X with 16 GB
RAM.

After the FEM simulation, we computed the quantities of interest: the Strouhal number (St), the
maximal drag coefficient (max CD), the maximal lift coefficient (max CL) and the maximal pressure
difference (∆p). It can be seen in Figure 5.4 that our results mostly coincide with the experimental
results from the benchmark paper [61] and only the maximal drag coefficient is slightly lower than the
results from the literature.

Quantity of interest Our results Benchmark results [61]
St 0.3018 [0.2950, 0.3050]

max CD 3.1755 [3.2200, 3.2400]
max CL 0.9899 [0.9900, 1.0100]

∆p 2.5079 [2.4600, 2.5000]

Figure 5.4: Quantities of interest results of the FEM solution of the 2D-2 benchmark

In Figure 5.5, Figure 5.6 and Figure 5.7, we summarize our observations of the finite element simulation
of the Navier-Stokes 2D-2 benchmark. In the first few seconds of the simulation, the fluid flow is still
not fully developed, which can be seen at the snapshots of the velocity magnitude and the pressure
at t = 0.75 s. After a few seconds, we can observe vortex shedding on the right of the circle. After
25 seconds of simulations, the fluid flow is fully developed and periodic in time. One period of the
flow is the length of time between two consecutive maxima of the lift coefficient. For our analysis, we
take a closer look at the time interval [26.395 s, 26.725 s], whose end points are exactly the times at
which the lift coefficient is maximal. In Figure 5.7, we plot the lift coefficient, the drag coefficient and
the pressure difference for this time interval. Furthermore, in Figure 5.5 and Figure 5.6, we also show
snapshots of the FEM solution, when the lift is maximal (t = 26.395 s) and minimal (t = 26.56 s) in
the time interval of interest.

34 CHAPTER 5. THE FEM FOR THE NAVIER-STOKES EQUATIONS

(a) Initial solution (t = 0.75 s)

(b) Maximal lift of period of fluid flow (t = 26.395 s)

(c) Minimal lift of period of fluid flow (t = 26.56 s)

Figure 5.5: Snapshots of the velocity magnitude of the FEM solution of the 2D-2 benchmark

5.6. NUMERICAL RESULTS 35

(a) Initial solution (t = 0.75 s)

(b) Maximal lift of period of fluid flow (t = 26.395 s)

(c) Minimal lift of period of fluid flow (t = 26.56 s)

Figure 5.6: Snapshots of the pressure of the FEM solution of the 2D-2 benchmark

36 CHAPTER 5. THE FEM FOR THE NAVIER-STOKES EQUATIONS

26.4 26.45 26.5 26.55 26.6 26.65 26.7
−1

−0.5

0

0.5

1

t

C
L

(a) Lift coefficient

26.4 26.45 26.5 26.55 26.6 26.65 26.7

3.12

3.14

3.16

3.18

t

C
D

(b) Drag coefficient

26.4 26.45 26.5 26.55 26.6 26.65 26.7

2.42

2.44

2.46

2.48

2.5

t

∆
p

(c) Pressure difference

Figure 5.7: Quantities of interest of the FEM solution of the 2D-2 benchmark during one period of
the flow

Chapter 6

The POD for the Navier-Stokes
equations

In this chapter, we will investigate the usage of the proper orthogonal decomposition for reduced
order modelling of the Navier-Stokes equations. Herefore, we will consider the 2D-2 benchmark from
Chapter 5, which simulates the flow around a cylinder in two dimensions. Using the results from
the finite element simulations, which have been described in Chapter 5, in the first step we compute
the POD basis of the velocity and of the pressure with the method of snapshots from Chapter 4. In
the second step, we apply the POD-ROM method to the momentum equation of the Navier-Stokes
equations and get a reduced order model for the velocity, wherein the pressure term vanishes due to
the incompressibility condition. In the third step, different approaches for the computation of the
pressure are being discussed, including a neural network based method, which is novel to the best of
the author’s knowledge. Finally, we discuss our solution of the numerical experiments and compare it
with the results from the literature. The interested reader can find more information on POD-ROM
for the Navier-Stokes equations in [14], [26][Chapter 5] and [70][Chapter 6].

6.1 POD of velocity and pressure

Using the finite element method setup from Chapter 5, we computed the 401 snapshots from initial
time 25 s to the final time 27 s with time step size 0.005 s via direct numerical simulation. In
the following, we will discuss how we separately computed the POD basis vectors for velocity and
pressure from these high fidelity snapshots. The velocity and pressure have also been computed with
a decoupled approach in [14, 26, 70].

6.1.1 POD of velocity

We will now compute the POD basis vectors for the velocity with the method of snapshots as explained
in Algorithm 3. The only novelty compared to the POD computation of the heat equation is that in
fluid mechanics one often uses a centering approach.

Figure 6.1: Magnitude of the mean velocity of the snapshots of the Navier-Stokes equations

37

38 CHAPTER 6. THE POD FOR THE NAVIER-STOKES EQUATIONS

Before using the method of snapshots, we first compute the mean of the velocity snapshots
η̄h = 1

n
∑n

i=1 η
h,i and the mean flow v̄vv(xxx) = ∑m

i=1 η̄
h
i ψ

v
i (xxx), where {ψv

i }mi=1 are the FEM basis functions
of the velocity. Then, we can use the ansatz

vvvr(t, xxx) = v̄vv(xxx) +
r∑

i=1
ηr

i (t)φv
i (xxx) (6.1)

for reduced order modelling of the velocity, where {φv
i }ri=1 with r � m are the POD modes of the

velocity. To compute these POD modes of the velocity with the method of snapshots, we first need
to center the snapshots with the mean flow, i.e. we first need to subtract the mean η̄h from the
snapshots ηh,i . We can then apply the proper orthogonal decomposition to the correlation matrix of
the centered snapshots as discussed in Chapter 4. The total energy of the velocity problem, i.e. the
sum of the eigenvalues of the correlation matrix, is 0.826184407011. Let us now analyze the largest
few eigenvalues of the correlation matrix of the velocity and verify that they decrease rapidly, which
motivates the usage of a reduced order model for the velocity.

2 4 6 8 10 12 1410−6

10−5

10−4

10−3

10−2

10−1

Figure 6.2: First 15 largest eigenvalues of the correlation matrix of the velocity of the Navier-Stokes
equations

In Figure 6.2, we observe that the eigenvalues of the correlation matrix of the velocity fall sharply,
which validates the POD ansatz (6.1) for truth approximation purposes. We will now look at the first
10 largest eigenvalues, their partial energies, which are the sum of the first r eigenvalues, and their
energy ratios (see (4.4)).

POD size i.th eigenvalue Partial energy Energy ratio
1 0.4008560512 0.4008560512 48.52 %
2 0.385506742831 0.786362794031 95.18 %
3 0.0130260162293 0.79938881026 96.76 %
4 0.012805095564 0.812193905824 98.31 %
5 0.00620677419644 0.81840068002 99.06 %
6 0.00618942896932 0.82459010899 99.81 %
7 0.000501109577591 0.825091218567 99.87 %
8 0.000499931133157 0.8255911497 99.93 %
9 0.000244898617558 0.825836048318 99.96 %
10 0.000243503640934 0.826079551959 99.987 %

Figure 6.3: Comparison of the first 10 largest eigenvalues, their partial energies and their energy ratios
for the velocity of the Navier-Stokes equations

6.1. POD OF VELOCITY AND PRESSURE 39

In Figure 6.3, we note that the partial energies are a good approximation to the total energy of
the velocity and the energy ratios approach 100 %, but not as quickly as it was the case for the
heat equation (see Figure 4.3). This indicates that the Navier-Stokes equation are a more complicated
problem than the heat equation and require a few more POD basis vectors for reduced order modelling.
In practice, the POD basis size is determined by taking the smallest POD basis size for which the
energy ratio is bigger than some threshold δE . We will now investigate how the size of the POD basis
of the velocity depends on the choice of this threshold δE .

δE POD size Energy ratio
90 % 2 95.18 %
95 % 2 95.18 %
99 % 5 99.06 %
99.9 % 8 99.93 %
99.99 % 11 99.992 %
99.999 % 14 99.9993 %

Figure 6.4: Size of the POD basis dependent on the threshold δE for the energy ratio of the velocity
of the Navier-Stokes equations

In Figure 6.4, we see that depending on the choice of the threshold δE for the energy ratio of the
velocity, only very few POD modes are needed to reach the desired energy ratio, e.g. for δE = 90 %
we need 2 basis vectors, for δE = 99 % we need 5 basis vectors and for δE = 99.99 % we need 11 basis
vectors. At the end of this section, we show the magnitude of the first five velocity POD modes of
the Navier-Stokes equations. We observe that the magnitudes of the first four velocity POD modes,
which are shown in Figure 6.9, visually resemble the POD modes of the Navier-Stokes equations that
have been depicted in [14][Fig. 4].

6.1.2 POD of pressure

We will now repeat the steps from the last subsection and compute the POD basis vectors for the
pressure with the method of snapshots and using a centering approach. Herefore, we first compute
the mean of the pressure snapshots ᾱh = 1

n
∑n

i=1α
h,i and the mean pressure p̄(xxx) = ∑mp

i=1 ᾱ
h
i ψ

p
i (xxx),

where {ψp
i }

mp
i=1 are the FEM basis functions of the pressure. Then, we can use the ansatz

pr(t, xxx) = p̄(xxx) +
rp∑

i=1
αr

i (t)φp
i (xxx) (6.2)

for reduced order modelling of the pressure, where {φp
i }

rp
i=1 with rp � mp are the POD modes of the

pressure. The POD basis size of the pressure does not need to be the same as the POD basis size of
the velocity, but for our numerical experiments we work with r = rp.

Figure 6.5: Mean pressure of the snapshots of the Navier-Stokes equations

40 CHAPTER 6. THE POD FOR THE NAVIER-STOKES EQUATIONS

To calculate the POD modes of the pressure, we again first center the snapshots with the mean
pressure, i.e. we subtract the mean ᾱh from the snapshots αh,i , and then use the proper orthogonal
decomposition on the correlation matrix of the centered snapshots. The total energy of the pressure
problem, i.e. the sum of the eigenvalues of the correlation matrix, is 0.123471339707. Next, we
visualize the largest eigenvalues of the correlation matrix of the pressure and check if they decline
quickly.

2 4 6 8 10 12 1410−7

10−6

10−5

10−4

10−3

10−2

10−1

Figure 6.6: First 15 largest eigenvalues of the correlation matrix of the pressure of the Navier-Stokes
equations

In Figure 6.6, we notice that the eigenvalues of the correlation matrix of the pressure descend rapidly
in value. Hence, the POD ansatz (6.2) should yield good approximations to the pressure from the FEM
simulations for even very few POD modes. We continue by analyzing the first 10 largest eigenvalues,
their partial energies, which are the sum of the first r eigenvalues, and their energy ratios (see (4.4)).

POD size i.th eigenvalue Partial energy Energy ratio
1 0.0612280781364 0.0612280781364 49.59 %
2 0.0512750051872 0.112503083324 91.12 %
3 0.00552804515282 0.118031128476 95.59 %
4 0.00485226040942 0.122883388886 99.52 %
5 0.000190400390044 0.123073789276 99.68 %
6 0.000178923435037 0.123252712711 99.82 %
7 0.00010849725874 0.12336120997 99.91 %
8 8.60398321476 · 10−5 0.123447249802 99.98 %
9 7.84770203766 · 10−6 0.123455097504 99.987 %
10 6.84251904709 · 10−6 0.123461940023 99.992 %

Figure 6.7: Comparison of the first 10 largest eigenvalues, their partial energies and their energy ratios
for the pressure of the Navier-Stokes equations

In Figure 6.7, we find that the partial energies are a good approximation to the total energy of the
pressure and the energy ratios converge towards 100 %. However, analogous to the observations for
the velocity POD basis, this convergence is not as fast as it was the case for the heat equation (see
Figure 4.3). We show in the following how the size of the POD basis of the pressure depends on the
threshold δE , which is the minimal desired energy ratio.

6.1. POD OF VELOCITY AND PRESSURE 41

δE POD size Energy ratio
90 % 2 91.12 %
95 % 3 95.59 %
99 % 4 99.52 %
99.9 % 7 99.91 %
99.99 % 10 99.992 %
99.999 % 14 99.9993 %

Figure 6.8: Size of the POD basis dependent on the threshold δE for the energy ratio of the pressure
of the Navier-Stokes equations

In Figure 6.8, we see that depending on the choice for the threshold δE for the energy ratio, only very
few POD modes are needed to reach the desired energy ratio, e.g. for δE = 90 % we need 2 basis
vectors, for δE = 99 % we need 4 basis vectors and for δE = 99.99 % we need 10 basis vectors. On the
final page of this section, we show the first five pressure POD modes. On closer inspection, we detect
that the first four pressure POD modes, which are shown in Figure 6.10, look similar to the POD
modes of the Navier-Stokes equations that have been published in [14][Fig. 5]. However, some of our
basis vectors differ from the results from the literature by a scaling of −1, which then only changes
the sign of the coefficients in the POD basis expansion (6.2).

42 CHAPTER 6. THE POD FOR THE NAVIER-STOKES EQUATIONS

(a) Magnitude of the first mode

(b) Magnitude of the second mode

(c) Magnitude of the third mode

(d) Magnitude of the fourth mode

(e) Magnitude of the fifth mode

Figure 6.9: Magnitude of the first five velocity POD modes of the Navier-Stokes equations

6.1. POD OF VELOCITY AND PRESSURE 43

(a) First mode

(b) Second mode

(c) Third mode

(d) Fourth mode

(e) Fifth mode

Figure 6.10: First five pressure POD modes of the Navier-Stokes equations

44 CHAPTER 6. THE POD FOR THE NAVIER-STOKES EQUATIONS

6.2 Velocity POD-ROM
Plugging the POD ansatz (6.1) into the weak formulation of the Navier-Stokes equations and using
the velocity POD modes {φv

i }ri=1 as test functions yields

ρ(∂tvvvr ,φv
i) + µ(∇vvvr +∇vvvr T ,∇φv

i)− µ
∫

Γout

[
∇vvvr T · nnn

]
· φv

i ds + ρ((vvvr · ∇)vvvr ,φv
i) = 0 ∀1 ≤ i ≤ r .

In the finite element discretization, we also had the terms (p,∇ · ψv) and (∇ · vvv, ψp) in the weak
formulation, but the velocity POD modes are a linear combination of the velocity snapshots {ηh,i}ni=1
from the FEM simulation and it is assumed that they satisfy the incompressibility condition. However,
this assumption is only idealized [14][Subsection 3.1]. Hence, the POD vectors φv

i for 1 ≤ i ≤ r by
construction also satisfy the incompressiblity condition and we thus have that

∇ · φv
i = 0 ∀1 ≤ i ≤ r ,

∇ · vvvr = 0.

Therefore, the reduced weak formulation doesn’t contain the pressure term and the term for the
incompressibility of the fluid. For more difficult problems in fluid mechanics, e.g. for fluid structure
interaction problems, we still need to account for the pressure in the reduced order model. Then,
the reduced weak form needs to be supplemented by some stabilization terms, since even though the
FEM function spaces satisfy the inf-sup condition, this doesn’t necessarily hold true anymore for the
reduced spaces [54]. To solve the reduced weak form, we again apply the One-Step-θ scheme for time
discretization. By defining v̂vv(xxx) := vvvr(tn , xxx)− v̄vv(xxx), a step of the time discrete formulation with time
step size k reads:

Find v̂vv(xxx) = ∑r
i=1 η

r ,n
i φv

i (xxx) such that

a(v̂vv)(φv
i) = l(φv

i) ∀1 ≤ i ≤ r , (6.3)

where

a(v̂vv)(φ) := ρ(v̂vv,φ) + kθµ(∇v̂vv +∇v̂vvT ,∇φ)− kθµ
∫

Γout

[
∇v̂vvT · nnn

]
· φ ds

+ kθρ((v̂vv · ∇)v̂vv,φ) + kθρ((v̄vv · ∇)v̂vv,φ) + kθρ((v̂vv · ∇)v̄vv,φ)

and

l(φ) := ρ(vvvr ,n−1,φ)− k(1− θ)µ
(
∇vvvr ,n−1 +∇vvvr ,n−1T

,∇φ
)

+ k(1− θ)µ
∫

Γout

[
∇vvvr ,n−1T · nnn

]
· φ ds

− k(1− θ)ρ((vvvr ,n−1 · ∇)vvvr ,n−1,φ)− kθρ((v̄vv · ∇)v̄vv,φ)

− ρ(v̄vv,φ)− kθµ(∇v̄vv +∇v̄vvT ,∇φ) + kθµ
∫

Γout

[
∇v̄vvT · nnn

]
· φ ds.

In this formulation vvvr ,n−1(xxx) = v̄vv(xxx) +∑r
i=1 η

r ,n−1
i φv

i (xxx) denotes the solution of the velocity from the
previous time step. We observe that the reduced weak formulation (6.3) is still a nonlinear problem.
Hence, we compute the Fréchet derivative of the semi-linear form a(v̂vv)(φ), which reads

a′(v̂vv)(δv̂vv,φ) = ρ(δv̂vv,φ) + kθµ(∇δv̂vv +∇δv̂vvT ,∇φ)− kθµ
∫

Γout

[
∇δv̂vvT · nnn

]
· φ ds (6.4)

+ kθρ((δv̂vv · ∇)v̂vv,φ) + kθρ((v̂vv · ∇)δv̂vv,φ)
+ kθρ((v̄vv · ∇)δv̂vv,φ) + kθρ((δv̂vv · ∇)v̄vv,φ).

In reduced order modelling, we try to avoid computations which are of order m, which is the number
of degrees of freedom in the finite element simulation. Hence, our goal is to assemble as much of the
linear equation system as possible in the offline phase of the reduced order modelling and then have a

6.3. PRESSURE RECONSTRUCTION 45

quick assembly in the online phase of the simulation. For most of the terms of the Fréchet derivative
(6.4), we can simply assemble the corresponding finite element matrices, e.g. the mass matrix, and
then project it into the space spanned by the POD vectors. Only the linearized terms ((δv̂vv · ∇)v̂vv,φ)
and ((v̂vv · ∇)δv̂vv,φ) cannot be assembled in this way. For these terms, we instead compute the rank 3
tensor C ∈ Rr×r×r with entries Cijk := ((φv

j · ∇)φv
k ,φ

v
i) for 1 ≤ i, j, k ≤ r .

6.3 Pressure reconstruction
Until now, we have only paid attention to the velocity in our POD-ROM modelling. In many appli-
cations, we are interested in the computation of goal functionals, like drag or lift, which require the
knowledge of the pressure solution. In [14], the authors analyzed three different methods on reduced
order models for the Navier-Stokes equations which include the computation of the pressure. The
first two methods use the reduced weak formulation from before to compute the pressure and then
proceed to determine the pressure by solving a Poisson equation. The third method is a coupled
method for simultaneous computation of the fluid velocity and pressure, by adding stabilization terms
to the Navier-Stokes equations. The stablization is necessary to ensure that the POD spaces satisfy
the inf-sup condition. In this thesis, we will only consider the first two methods, which have been
presented in [14] and in [26][Chapter 5]. Additionally, we also consider a neural network aproach,
which learns a mapping between the velocity and pressure POD spaces, and is novel to the best of
the author’s knowledge.

To reconstruct the pressure, we commence by considering the strong formulation of the Navier-Stokes
equations (5.1) and taking the divergence of the momentum equation. This yields

−∆p = ρ∇ · [(vvv · ∇)vvv] in Ω,

since all other terms vanish due to the incompressibility condition ∇· vvv = 0. We can pass to the POD
spaces and rewrite the right hand side as

−∆pr = ρ∇ · [(vvvr · ∇)vvvr] = ρ
(
(∂1vr

1)2 + 2∂2vr
1∂1vr

2 + (∂2vr
2)2
)

in Ω. (6.5)

In the following, we will discuss two different methods from [14], which try to solve this Poisson
equation for the pressure.

6.3.1 Method based on velocity modes

The first method is based on the POD modes of the velocity and was first introduced in [51]. Herein,
we plug the ansatz (6.1) into the Poisson problem (6.5) and define ηr

0(t) ≡ 1 and φv
0(xxx) = v̄vv(xxx). This

yields

−∆pr = ρ
r∑

i=0

r∑
j=0

ηr
i (t)ηr

j (t)
{ 2∑

k=1

2∑
l=1

∂k(φv
i)l ∂l(φv

j)k

}
.

Note that here the time dependent coefficients ηr
i (t) and ηr

j (t) are known from the velocity ROM.
Hence, the solution to the reduced pressure equation reads

pr(t, xxx) = ρ
r∑

i=0

r∑
j=0

ηr
i (t)ηr

j (t)pij(xxx),

where pij for 1 ≤ i, j ≤ r solve the Poisson equation

−∆pij =
2∑

k=1

2∑
l=1

∂k(φv
i)l ∂l(φv

j)k in Ω.

46 CHAPTER 6. THE POD FOR THE NAVIER-STOKES EQUATIONS

At first glance, this approach seems to be a viable model order reduction method. The pressure
coefficients pij for 1 ≤ i, j ≤ r can be computed in the offline stage and be used for the recovery of
the pressure at time step tn from the velocity solution in the online stage. However, the authors of
[14] point out that the recovery of the pressure in the online stage requires O(r2mp) operations, where
mp is the number of degrees of freedom of the pressure in the FEM simulation, since one needs to
compute a linear combination of the functions pij . Furthermore, the offline stage, which involves the
computation of the coefficients pij for 1 ≤ i, j ≤ r takes longer than the computation of the POD
modes for the pressure. This motivates the usage of a pressure mode based approach for model order
reduction. Finally, in their numerical experiments Caiazzo et al [14] observed that the range of the
drag coefficient in velocity mode based computations of the pressure was significantly lower than the
range of the drag coefficient in the FEM simulation. Due to the lack of computational efficiency
and the lack of accuracy, we will not investigate velocity mode based approaches for the pressure
reconstruction and instead focus on pressure mode based approaches.

6.3.2 Method based on pressure modes

In this method, we again solve (6.5) in each time step, but we now express the pressure with the help
of its POD modes, which was proposed in [36]. To derive the weak formulation, we use the boundary
conditions which have been described in [26][Subsection 2.2.2, Subsection 5.4.2]. On the Dirichlet
boundaries of the velocity, we apply Neumann boundary conditions to the pressure. On the Nemann
boundaries of the velocity, we apply Dirichlet boundary conditions to the pressure. We thus have the
boundary conditions

∂np =
(
∇ · (∇vvvr +∇vvvr T)− (vvvr · ∇)vvvr

)
· nnn on ∂Ω \ Γout,

p = 0 on Γout.

Plugging the pressure ansatz (6.2) into the Poisson equation (6.5) and applying integration by parts,
we get that

rp∑
j=1

(∇φp
j ,∇φ

p
i)αr ,n

j = ρ (∇ · [(vvvr · ∇)vvvr] , φp
i)− (∇p̄,∇φp

i)

+
∫
∂Ω\Γout

(
∇ · (∇vvvr +∇vvvr T)− (vvvr · ∇)vvvr

)
· nnn φp

i ds ∀1 ≤ i ≤ rp,

where αr ,n
j := αr

j (tn) and vvvr := vvvr ,n = vvvr(tn). This pressure mode based reduced order model
produced goal functional results that closely matched the results from the high fidelity simulations
in [14, 26]. In the next subsection, we will investigate whether we can achieve solutions of similar
accuracy by using a machine learning approach, which doesn’t require the solution of the Poisson
equation (6.5).

6.3.3 Neural network based pressure reconstruction

To recover the reduced pressure from the reduced velocity, we consider feedforward neural networks
NN : Rr → Rrp , where r is the number of velocity POD modes and rp is the number of pressure POD
modes.

...
ηrvvvr(tn)

σ

σ

σ

σ

...

σ

σ

σ

σ

...

σ

σ

σ

σ

...
...

αr pr(tn)

· · ·
· · ·
· · ·

· · ·

Figure 6.11: Fully connected neural network which is being used for the reconstruction of the reduced
pressure from the reduced velocity

6.3. PRESSURE RECONSTRUCTION 47

The neural networks can be expressed as

NN(x) = T (L) ◦ σ ◦ T (L−1) ◦ · · · ◦ σ ◦ T (1)(x),

where T (i) : Rni−1 → Rni , y 7→ W (i)y + b(i) are affine transformations for 1 ≤ i ≤ L, with weight
matrices W (i) ∈ Rni×ni−1 and bias vectors b(i) ∈ Rni . Here, ni denotes the number of neurons in
the i.th layer with n0 = r and nL = rp. σ : R → R is a nonlinear activation function, which is the
hyperbolic tangent function in this thesis. The activation function is being applied element-wise to
the output of the affine transformation. Using neural networks to recover the pressure is motivated
by the universal approximation theorem [19, 34, 56], which states that continuous functions can be
approximated to arbitrary precision by single hidden layer neural networks.

To train the parameters of the neural network, i.e. the weights and biases of the affine transformations,
we first used the snapshots of the FEM simulation and computed the reduced velocities vvvr and the
reduced pressures pr . The reduced velocities and reduced pressures can be expressed as a linear
combination of their respective POD modes and the mean (see (6.1) and (6.2)). Since these reduced
solutions can be fully described by their coefficients, we use the coefficients of the velocity ηr ∈ Rr as
the input to the neural network and the coefficients of the pressure αr ∈ Rrp as the target output of
the neural network. In this way, we are trying to learn the mapping

NN(ηr) = αr

for all input-output pairs (ηr ,αr) ∈ Rr×Rrp in the training dataset. To learn such a mapping, during
training we try to minimize the mean squared error loss

`
({
ηr ,i

}n

i=1
,
{
αr ,i

}n

i=1

)
= 1

n

n∑
i=1

∥∥∥NN
(
ηr ,i

)
−αr ,i

∥∥∥2

using the Adam optimizer [41], an adaptive gradient descent method, with a learning rate of 10−4.
We use the full dataset in each training step and stop the training after 20,000 epochs or when the
loss hasn’t decreased within the last 1,000 epochs. In Figure 6.12, we visualize how the loss decreases
during training for different sizes of the POD.

5000 10000 15000 20000

10−8

10−6

10−4

10−2

epoch

lo
ss

r = 3
r = 10
r = 25

Figure 6.12: Comparison of the loss during training for different sizes of the POD basis

We observe that the loss of the neural seems to gradually decline below 10−8 for the different POD
sizes and only for r = 10 the parameters of the neural network might be stuck close to a local minimum.

The neural networks have been implemented in LibTorch, the PyTorch [55] C++ application pro-
gramming interface, using a seed of 1.

48 CHAPTER 6. THE POD FOR THE NAVIER-STOKES EQUATIONS

6.4 Numerical results

Finally, we will take a closer look at the numerical results of the reduced order model and assess its
computational efficiency and robustness.

25 25.2 25.4 25.6 25.8 26 26.2 26.4 26.6 26.8 27

−1

0

1

t

C
L

FEM POD(3)-ROM POD(10)-ROM POD(25)-ROM
(a) Lift coefficient

25 25.2 25.4 25.6 25.8 26 26.2 26.4 26.6 26.8 27

3.12

3.14

3.16

3.18

t

C
D

FEM POD(3)-ROM POD(10)-ROM POD(25)-ROM
(b) Drag coefficient

25 25.2 25.4 25.6 25.8 26 26.2 26.4 26.6 26.8 272.4

2.45

2.5

t

∆
p

FEM POD(3)-ROM POD(10)-ROM POD(25)-ROM
(c) Pressure difference

Figure 6.13: Comparison of quantities of interest of the FEM solution and the POD-ROM solution
for different sizes of the POD basis

6.4. NUMERICAL RESULTS 49

In Figure 6.13, we plot the drag and lift coefficients and the pressure difference between 25 s and 27 s
for the finite element solution and the reduced order model solution with different POD sizes. We
observe that a POD basis of size 3 is not sufficiently big to be able to capture the correct dynamics of
the physical system and there is a large error between this POD-ROM solution and the FEM solution.
On the other hand, the reduced order model simulations with a bigger POD basis size, i.e. r = 10 or
r = 25, yield much more accurate predictions of the goal functionals, which are almost indistinguish-
able from the FEM results. Moreover, the difference between the results for a basis of size 10 and a
basis of size 25 is very small, which hints at an observation that we will make later on: If the POD
basis is big enough, i.e. r = 10 or r = 25, adding a few basis vectors in the POD leads only to minor
improvements in the accuracy of the reduced order model. Finally, we mention that the observations
of the goal functional results can also be found in the literature, e.g. in [14][Fig. 7].

Thus far, we have noticed that the values of the goal functionals of the reduced order models look
promising, but how is the efficiency of the reduced order models compared to the finite element
simulation? The direct numerical solver (FEM) took 396.270 seconds for the computations. We will
now compare this to the computation times of the POD-ROM for different sizes of the POD basis.

POD size NN time Absolute time Relative time
1 8 s 40.457 s 10.21 %
2 8 s 39.856 s 10.06 %
3 8 s 40.290 s 10.17 %
4 8 s 40.785 s 10.29 %
5 8 s 41.013 s 10.35 %
6 8 s 41.698 s 10.52 %
7 9 s 42.540 s 10.74 %
8 9 s 41.350 s 10.43 %
9 9 s 43.085 s 10.87 %
10 10 s 43.396 s 10.95 %
11 4 s 37.660 s 9.50 %
12 4 s 38.573 s 9.73 %
13 4 s 38.204 s 9.64 %
14 6 s 40.716 s 10.27 %
15 8 s 42.508 s 10.73 %
16 9 s 44.493 s 11.23 %
17 10 s 45.328 s 11.44 %
18 10 s 45.471 s 11.47 %
19 11 s 46.467 s 11.73 %
20 11 s 47.013 s 11.86 %
21 11 s 47.899 s 12.09 %
22 12 s 48.456 s 12.23 %
23 11 s 47.374 s 11.95 %
24 11 s 49.166 s 12.41 %
25 11 s 48.795 s 12.31 %

Figure 6.14: Comparison of FEM simulation times with computation time of POD-ROM depending
on the size of the POD basis for the Navier-Stokes equations

In Figure 6.14, the absolute time denotes the total computation time for determining the POD basis
vectors and reduced order modelling. Relative time is the quotient of the absolute time of the POD-
ROM method and the computation time of the finite element simulation. We observe that a bigger
POD basis leads to a small increase in the computation time, which for our reduced order models is
between 9.50% and 12.31% of the computation time of finite element simulation. This means that in
our experiments the ROM was on average 9.15 times faster than the direct numerical simulation.

50 CHAPTER 6. THE POD FOR THE NAVIER-STOKES EQUATIONS

We have established that the POD-ROM leads to a computational speed up, but how much accuracy
have we lost in this trade-off? To answer this question, we will work with the root mean squared error
as an evaluation metric, which is defined as

RMSE :=

√√√√ 1
n

n∑
i=1

(ỹi − yi)2,

where {yi}ni=1 are the values of the goal functional of the FEM solution and {ỹi}ni=1 are the values of
the goal functional of the POD-ROM solution. In Figure 6.17, we have plotted the root mean squared
error for the drag and lift coefficient and the pressure difference between the FEM solution and the
POD-ROM solution for different sizes of the POD basis. We observe that the root mean squared error
in the goal functionals is the largest for a POD basis which contains between 1 and 3 vectors. If we
then increase the POD basis size, the error decays rapidly until about a POD basis size of 15, at which
point the error seems to stagnate. This signifies that a POD size of 15 is sufficient to achieve nearly
optimal root mean squared error in the goal functionals and even smaller POD bases, which consist of
only 8 or 10 vectors, already yield accurate results. Taking a look into the literature, we notice that
our root mean squared error results are of the same magnitude as the results reported in [14][Fig. 8]

Finally, we should also pay attention to the neural network architecture, i.e. the size of the neural
network, which we are using for the pressure reconstruction. For the previous numerical experiments,
we have been using a neural network with one hidden layer and 30 neurons in this hidden layer. At this
point we need to ask the question whether an increase in the number of hidden layers or the number
of neurons therein leads to a decrease in the error between the FEM and the POD-ROM solution. For
these numerical experiments we will use a fixed POD basis size of 25 vectors.

Neurons in the hidden layer(s) NN time Absolute time Relative time
(30) 11 s 49.147 s 12.40 %

(30, 30) 18 s 61.931 s 15.63 %
(60, 60) 21 s 65.296 s 16.48 %

Figure 6.15: Comparison of FEM simulation times with computation time of POD-ROM depending
on the number of hidden layers and the number of neurons therein

In Figure 6.15, we observe that more hidden layers and a higher number of neurons in these hidden
layers leads to an increase in training time of the neural network and a longer computation time of
the POD-ROM method, since bigger neural networks also take longer for inference, i.e. it takes longer
to make predictions with more complicated networks.

Neurons in the hidden layer(s) Drag RMSE Lift RMSE Pressure difference RMSE
(30) 1.3260 · 10−3 1.4504 · 10−2 1.6944 · 10−3

(30, 30) 1.3288 · 10−3 1.4402 · 10−2 1.6990 · 10−3

(60, 60) 1.3246 · 10−3 1.4507 · 10−2 1.6942 · 10−3

Figure 6.16: Root mean squared error of the goal functionals of the FEM and the ROM solution
depending on the number of hidden layers and the number of neurons therein

We repeated the experiment for different sized neural networks to investigate whether larger networks
produce better approximations of the goal functionals. However, in Figure 6.16 we don’t observe an
improvement in the root means squared error between the goal functionals of the FEM simulation and
the goal functionals of the POD-ROM simulation, if we use larger networks. Hence, a neural network
with one hidden layer containing 30 neurons seems to be the best choice from these three neural

6.4. NUMERICAL RESULTS 51

network architectures, since it has the fastest computation and inference time, and it is sufficiently
accurate when compared to the other neural networks.

5 10 15 20 2510−3

10−2

10−1

POD size

R
M
SE

of
C

L

(a) Error of lift coefficient

5 10 15 20 2510−2

10−1

POD size

R
M
SE

of
C

D

(b) Error of drag coefficient

5 10 15 20 2510−3

10−2

10−1

POD size

R
M
SE

of
∆
p

(c) Error of pressure difference

Figure 6.17: Root mean squared error of the goal functionals of the FEM and the ROM solution
depending on the size of the POD basis

52 CHAPTER 6. THE POD FOR THE NAVIER-STOKES EQUATIONS

Chapter 7

Conclusion and outlook

7.1 Conclusion
In this thesis, we investigated a proper orthogonal decomposition based reduced order model for the
time-dependent Navier-Stokes equations. The proper orthogonal decomposition leverages the data
from the direct numerical simulations and creates a new basis for reduced order modelling. If the
eigenvalues of the correlation matrix of the snapshots decay rapidly, it is sufficient to use only a few
basis vectors for reduced order modelling and we achieve a significant speedup over the high fidelity
simulation. In our numerical experiments of the heat equation and the Navier-Stokes equations, this
condition has been satified. Thus, we observed that a POD basis with around 10 basis vectors yields
accurate results and produces a tenfold speedup compared to the FEM simulation. In this thesis, we
considered separate reduced order models for the velocity and pressure of the Navier-Stokes equations.
Multiple methods for the pressure reconstruction have been presented, including a neural network
based approach which is new to the best of our knowledge. Moreover, it has been demonstrated
experimentally that our neural network based pressure reconstruction has a similar computational
efficiency and accuracy as the methods from the literature.

7.2 Outlook
Based on the observations made in this thesis and current trends in the reduced order modelling com-
munity, we present several ideas for possible future developments:

Hyperreduction techniques for nonlinear partial differential equations

Nonlinear partial differential equations are inherently different to solve with numerical methods and
this can lead to the reduced order model not being fully independent of the dimension of finite element
space [30][Subsection 2.3.3]. In this thesis, for the treatment of the nonlinearity from the Navier-Stokes
equations, we assembled a rank 3 tensor C ∈ Rr×r×r for the convection term. To avoid an expensive
evaluation of the nonlinear terms in the reduced order model, in the literature either the Navier-Stokes
equations are being linearized [14] or hyperreduction techniques for the nonlinear term are being used,
where the evaluation of the nonlinear term only depends on the dimension r of the POD space. Popular
choices are empirical interpolation methods, such as EIM [8] (empirical interpolation method), DEIM
[16, 17] (discrete empirical interpolation method) and Q-DEIM [21] (QR decomposition based DEIM).
Alternative methods are missing point estimation [3], best points interpolation [50] and Gauss-Newton
with approximated tensor quantities [1].

53

54 CHAPTER 7. CONCLUSION AND OUTLOOK

Deep learning based reduced order modelling

It has been shown in this thesis that reduced order models for the Navier-Stokes equations can be
created with the help of the proper orthogonal decomposition. However, there are a few drawbacks
to this approach. As mentioned above, the evaluation of the nonlinearity typically requires additional
hyperreduction techniques. Furthermore, in a monolithic reduced order model for the Navier-Stokes
equations the reduced spaces don’t satisfy the inf-sup condition anymore and one needs to add stabi-
lization terms to the reduced weak form of the Navier-Stokes equations [54]. Using a POD-ROM ansatz
becomes even more challenging when we consider more complicated problems, e.g. fluid structure in-
teraction. On the other hand, deep learning methods have found many applications in computational
fluid dynamics in recent years [44, 10]. Therefore, we start to see more and more deep learning based
approaches, which try to circumvent the limitations of traditional model order reduction techniques
[46, 24].

Reduced order modelling with snapshots from adaptively refined meshes

Solving fluid dynamics problems with many million unknowns is computationally very expensive.
Therefore, in this work we employed a proper orthogonal decomposition based reduced order model,
which reduces the number of unknowns to around 10 unknowns. However, one could also try to reduce
the number of unknowns in the direct numerical simulation by employing adaptive finite elements [7].
In [29], the authors extend the proper orthogonal decomposition based reduced order modelling to be
able to use snapshots from adaptively refined meshes.

Appendix A

Technical proofs

A.1 Theorem 3.3.1
Proof. The proof is based on [67][Theorem 1.1].

PART 1: {ψi}ri=1 solves (Pr)

(Pr) is a maximization problem with equality constraints. We can thus use the Lagrange formalism
to verify that the left singular vectors {ψi}ri=1 solve the optimization problem (Pr).

Part 1a): First-order necessary conditions

We introduce the Lagrange function

L : Rm × · · · × Rm︸ ︷︷ ︸
r times

×Rr×r ,
(
ψ1, . . . ,ψr ,Λ := (λij)r

i,j=1
)
7→

r∑
i=1

n∑
j=1
|(uuuj ,ψi)Rm |2 +

r∑
i,j=1

λij (δij − (ψi ,ψj)Rm) .

Then, the first-order necessary optimality conditions for (Pr) are the Karush-Kuhn-Tucker conditions
(KKT conditions), which are given by

∂ψiL(ψ1, . . . ,ψr ,Λ) = 0 for 1 ≤ i ≤ r , (A.1)
∂λijL(ψ1, . . . ,ψr ,Λ) = δij − (ψi ,ψj)Rm = 0 for 1 ≤ i, j ≤ r . (A.2)

Notice that ∂λijL = 0 makes sure that {ψi}ri=1 is admissible, i.e. in this case that {ψi}ri=1 is orthonor-
mal. Therefore, let us take a closer look at the conditions ∂ψiL = 0 for 1 ≤ i ≤ r . Then we have for
1 ≤ k ≤ r that

∂ψkL(ψ1, . . . ,ψr ,Λ)δψk = 0 ∀δψk ∈ Rm .

Computing the derivative then yields

∂ψkL(ψ1, . . . ,ψr ,Λ)δψk = 2
r∑

i=1

n∑
j=1

(uuuj ,ψi)Rm (uuuj , δψk)Rmδik

−
r∑

i,j=1
λij(ψi , δψk)Rmδjk −

r∑
i,j=1

λij(δψk ,ψj)Rmδki

= 2
n∑

j=1
(uuuj ,ψk)Rm (uuuj , δψk)Rm −

r∑
i=1

(λik + λki)(ψi , δψk)Rm

=

2
n∑

j=1
(uuuj ,ψk)Rmuuuj −

r∑
i=1

(λik + λki)ψi , δψk


Rm

.

55

56 APPENDIX A. TECHNICAL PROOFS

Using that ∂ψkL(ψ1, . . . ,ψr ,Λ)δψk = 0, we get that
n∑

j=1
(uuuj ,ψk)Rmuuuj = 1

2

r∑
i=1

(λik + λki)ψi (A.3)

for all 1 ≤ k ≤ r . Since Y = [uuu1, . . . , uuun], we get by direct computation that

YYTψ = Y

(uuu1,ψ)Rm

...
(uuun ,ψ)Rm

 =
n∑

j=1
(uuuj ,ψ)Rmuuuj ∀ψ ∈ Rm . (A.4)

Plugging this into (A.3) yields

YYTψk = 1
2

r∑
i=1

(λik + λki)ψi (A.5)

for all 1 ≤ k ≤ r . We will now prove by induction that the condition ∂ψiL = 0 for 1 ≤ i ≤ r can be
rewritten as the eigenvalue problem

YYTψi = λiψi for 1 ≤ i ≤ r . (A.6)

Induction start: We have r = 1 and by (A.5) with k = 1 it holds that

YYTψ1 = λ1ψ1,

where λ1 := λ1,1.

Induction assumption: Next, we assume that for r ≥ 1 the condition ∂ψiL = 0 for 1 ≤ i ≤ r can be
rewritten as

YYTψi = λiψi for 1 ≤ i ≤ r .

Induction step: Now we need to show that this statement still holds when we go from r to r + 1. Due
to the induction assumption, it only remains to show that

YYTψr+1 = λr+1ψr+1.

By (A.5), we then have that

YYTψr+1 = 1
2

r+1∑
i=1

(λi,r+1 + λr+1,i)ψi . (A.7)

Since {ψi}r+1
i=1 also needs to satisfy ∂λijL = 0 for 1 ≤ i, j ≤ r + 1, {ψi}r+1

i=1 is orthonormal and in
particular

(ψr+1,ψj)Rm = 0 for 1 ≤ j ≤ r .

Multiplying this equation by λj and using the induction assumption, we get

0 = λj(ψr+1,ψj)Rm = (ψr+1,YYTψj)Rm .

Using that YYT is symmetrical and equation (A.7), we finally arrive at

0 = (YYTψr+1,ψj)Rm = 1
2

r+1∑
i=1

(λi,r+1 + λr+1,i) (ψi ,ψj)Rm︸ ︷︷ ︸
=δij

= 1
2(λj,r+1 + λr+1,j),

A.1. THEOREM 3.3.1 57

which means that λr+1,i = −λi,r+1 for 1 ≤ i ≤ r . Plugging these relations of the Lagrange multipliers
into (A.7) gets simplified to

YYTψr+1 = 1
2

r∑
i=1

(λi,r+1 + λr+1,i)ψi + λr+1,r+1ψr+1

= 1
2

r∑
i=1

(λi,r+1 − λi,r+1)ψi + λr+1,r+1ψr+1

= λr+1,r+1ψr+1,

which proves the induction step, if we set λr+1 := λr+1,r+1.

From the singular value decomposition, it follows that the left singular vectors {ψi}ri=1 satisfy the
eigenvalue problem

YYTψi = λiψi for 1 ≤ i ≤ r .

Furthermore, Ψ = [ψ1, . . . ,ψm] is an orthogonal matrix. Hence, {ψi}ri=1 is also orthonormal. We
have thus shown that the left singular vectors {ψi}ri=1 fulfill the KKT conditions (A.1) and (A.2).

Part 1b): Second-order necessary conditions

A necessary condition for a maximum is that the Hessian matrix of the Lagrange function is negative
semidefinite on ker∇c(ψ), i.e

ψ̃T∇2
ψψL(ψ,Λ)ψ̃ ≤ 0 ∀ψ̃ :=


ψ̃1
...
ψ̃r

 ∈ ker∇c(ψ) ⊂ Rmr .

Here, we use the notation

ψ :=

ψ1
...
ψr

 ∈ Rmr

for the big vector that contains the first r left singular vectors of Y . The functions cij(ψ) = δij −
(ψi ,ψj)Rm for 1 ≤ i, j ≤ r describe the constraints and ∇c(ψ) is defined as

∇c(ψ) :=


∇c1,1(ψ)
∇c1,2(ψ)

...
∇cr ,r(ψ)

 ∈ Rr2×mr .

The derivatives of these constraint functions read

∂ψkcij(ψ) = −ψT
i δjk −ψT

j δik

for 1 ≤ i, j, k ≤ r . Therefore, it holds that
r∑

k=1
∂ψkcij(ψ)ψ̃k =

r∑
k=1
−(ψi , ψ̃k)Rmδjk − (ψj , ψ̃k)Rmδik

= −(ψi , ψ̃j)Rm − (ψj , ψ̃i)Rm .

For ψ̃ ∈ ker∇c(ψ), we have ∇c(ψ)ψ̃ = 0, which is equivalent to

(∇cij(ψ), ψ̃)Rmr = 0 for 1 ≤ i, j ≤ r .

58 APPENDIX A. TECHNICAL PROOFS

We have already evaluated this inner product, namely

0 != (∇cij(ψ), ψ̃)Rmr =
r∑

k=1
∂ψkcij(ψ)ψ̃k

= −(ψi , ψ̃j)Rm − (ψj , ψ̃i)Rm .

We observe that (ψi , ψ̃j)Rm = −(ψj , ψ̃i)Rm and in particular∣∣∣(ψi , ψ̃j)Rm

∣∣∣2 =
∣∣∣(ψj , ψ̃i)Rm

∣∣∣2 (A.8)

holds true for 1 ≤ i, j ≤ r .

From Part 1a), we recall from (A.5) that

∂ψkL(ψ,Λ) = 2YYTψk −
n∑

j=1
(λjk + λkj)ψj

for 1 ≤ k ≤ r . Differentiating this again yields

∂ψl∂ψkL(ψ,Λ) = 2YYTδlk − (λlk + λkl)I (A.9)

for 1 ≤ l, k ≤ r , where I ∈ Rm×m is the identity matrix. The Hessian matrix of the Lagrange function
reads

∇2
ψψL(ψ,Λ) =


∂ψ1∂ψ1L(ψ,Λ) ∂ψ1∂ψ2L(ψ,Λ) · · · ∂ψ1∂ψrL(ψ,Λ)
∂ψ2∂ψ1L(ψ,Λ) ∂ψ2∂ψ2L(ψ,Λ) · · · ∂ψ2∂ψrL(ψ,Λ)

...
...

∂ψr∂ψ1L(ψ,Λ) ∂ψr∂ψ2L(ψ,Λ) · · · ∂ψr∂ψrL(ψ,Λ)

 ∈ Rmr×mr .

We now show the negative semidefiniteness of the Hessian matrix on ker∇c(ψ). Let

ψ̃ =


ψ̃1
...
ψ̃r

 ∈ ker∇c(ψ) ⊂ Rmr .

Then we have that

ψ̃T∇2
ψψL(ψ,Λ)ψ̃ =



ψ̃1
...
ψ̃r

 ,

∑r

j=1 ∂ψ1∂ψjL(ψ,Λ)ψ̃j
...∑r

j=1 ∂ψr∂ψjL(ψ,Λ)ψ̃j




Rmr

(A.9)=



ψ̃1
...
ψ̃r

 ,

∑r

j=1

[
2YYT ψ̃jδ1j − (λ1j + λj1)ψ̃j

]
...∑r

j=1

[
2YYT ψ̃jδrj − (λrj + λjr)ψ̃j

]



Rmr

.

Notice that we have shown in the induction in part 1a) of the proof that λij = −λji for i 6= j. Using
this fact and setting λi := λii for 1 ≤ i ≤ r , the previous inner product simplifies to

ψ̃T∇2
ψψL(ψ,Λ)ψ̃ =



ψ̃1
...
ψ̃r

 ,


2YYT ψ̃1 − 2λ1ψ̃1
...

2YYT ψ̃r − 2λrψ̃r




Rmr

= 2
r∑

k=1
(ψ̃k , (YYT − λk)ψ̃k)Rm .

A.1. THEOREM 3.3.1 59

The left singular vectors {ψi}mi=1 build an orthonormal basis of Rm , which allows us to write the
vectors ψ̃i in their Fourier series representation

ψ̃i =
m∑

j=1
(ψ̃i ,ψj)Rmψj (A.10)

for 1 ≤ i ≤ r . Using this Fourier series representation and the eigenvalue relation (A.6), we get that

ψ̃T∇2
ψψL(ψ,Λ)ψ̃ = 2

r∑
k=1

m∑
i,j=1

(ψ̃k ,ψi)Rm (ψ̃k ,ψj)Rm (ψi , (YYT − λk)ψj)Rm

(A.6)= 2
r∑

k=1

m∑
i,j=1

(λj − λk)(ψ̃k ,ψi)Rm (ψ̃k ,ψj)Rm (ψi ,ψj)Rm︸ ︷︷ ︸
=δij

= 2
r∑

k=1

m∑
i=1

(λi − λk)
∣∣∣(ψ̃k ,ψi)Rm

∣∣∣2 .
We can now use the property (A.8) of ker∇c(ψ) and observe that

r∑
k=1

r∑
i=1

(λi − λk)
∣∣∣(ψ̃k ,ψi)Rm

∣∣∣2 = 0,

since λi − λk = 0 for 1 ≤ i = k ≤ r and

(λi − λk)
∣∣∣(ψ̃k ,ψi)Rm

∣∣∣2 + (λk − λi)
∣∣∣(ψ̃i ,ψk)Rm

∣∣∣2 = 0

for 1 ≤ i < k ≤ r , due to (A.8). Finally, since the eigenvalues {λi}mi=1 are sorted in descending order,
we get the negative definiteness of the Hessian matrix:

ψ̃T∇2
ψψL(ψ,Λ)ψ̃ = 2

r∑
k=1

m∑
i=r+1

(λi − λk)︸ ︷︷ ︸
≤0

∣∣∣(ψ̃k ,ψi)Rm

∣∣∣2 ≤ 0.

This completes the proof that {ψi}ri=1 satisfies the second-order necessary conditions for a maximum.

Part 1c): {ψi}ri=1 is a maximum of (Pr)

To prove that {ψi}ri=1 is a maximum of (Pr), we will compute the solution to this optimization
problem inductively. For 1 ≤ l ≤ r − 1, let the solution {ψi}li=1 to the optimization problem (Pl)
be given. Then we compute the (l + 1).th POD vector by considering the equivalent maximization
problem

max
ψ̃l+1∈Rm

n∑
j=1
|(uuuj , ψ̃l+1)Rm |2 s.t.

(ψ̃l+1,ψj)Rm = 0 ∀1 ≤ j ≤ l,

‖ψ̃‖Rm = 1.
(Pl+1

iter)

Induction start: We start by showing that the first left singular vector ψ1 solves P1 = P1
iter. For this

let ψ̃1 ∈ Rm denote another normed vector. We need to show that
n∑

j=1
|(uuuj , ψ̃1)Rm |2 ≤

n∑
j=1
|(uuuj ,ψ1)Rm |2.

Since the left singular vectors {ψi}mi=1 build an orthonormal basis of Rm , we can use the Fourier series
representation (A.10) of ψ̃1, which gives us

n∑
j=1
|(uuuj , ψ̃1)Rm |2 =

n∑
j=1

∣∣∣∣∣
(
uuuj ,

m∑
i=1

(ψ̃1,ψi)Rmψi

)
Rm

∣∣∣∣∣
2

=
n∑

j=1

m∑
i=1

m∑
k=1

(
uuuj , (ψ̃1,ψi)Rmψi

)
Rm

(
uuuj , (ψ̃1,ψk)Rmψk

)
Rm

=
n∑

j=1

m∑
i=1

m∑
k=1

(uuuj ,ψi)Rm (uuuj ,ψk)Rm (ψ̃1,ψi)Rm (ψ̃1,ψk)Rm .

60 APPENDIX A. TECHNICAL PROOFS

Combining (A.4) and (A.6), we get that

n∑
j=1

(uuuj ,ψk)Rm uuuj = λkψk (A.11)

for 1 ≤ k ≤ m. We can thus further simplify the previous equation.

n∑
j=1
|(uuuj , ψ̃1)Rm |2 =

m∑
i=1

m∑
k=1

(n∑
j=1

(uuuj ,ψi)Rm uuuj︸ ︷︷ ︸
=λiψi

,ψk

)
Rm

(ψ̃1,ψi)Rm (ψ̃1,ψk)Rm

=
m∑

i=1

m∑
k=1

λi (ψi ,ψk)Rm︸ ︷︷ ︸
=δik

(ψ̃1,ψi)Rm (ψ̃1,ψk)Rm

=
m∑

i=1
λi
∣∣∣(ψ̃1,ψi)Rm

∣∣∣2
Note that λ1 is the biggest eigenvalue and ψ̃1 is normed, hence

n∑
j=1
|(uuuj , ψ̃1)Rm |2 =

m∑
i=1

λi
∣∣∣(ψ̃1,ψi)Rm

∣∣∣2 ≤ λ1

m∑
i=1

∣∣∣(ψ̃1,ψi)Rm

∣∣∣2 = λ1‖ψ̃1‖2Rm = λ1.

This proves the induction start, since we will show in equation (A.12) that

λ1 =
n∑

j=1
|(uuuj ,ψ1)Rm |2.

Induction assumption: Next, we assume that for r ≥ 1 the solution to the optimization problem (Pr)
is given by the first r left singular vectors {ψi}ri=1.

Induction step: Now we need to show that this statement still holds when we go from r to r + 1. For
this we need to verify that the (r + 1).th left singular vector ψr+1 solves Pr+1

iter . The procedure of
this proof is analogous to the induction start. Let ψ̃r+1 ∈ Rm denote another normed vector which is
orthogonal to the vectors {ψi}ri=1. We need to show that

n∑
j=1
|(uuuj , ψ̃r+1)Rm |2 ≤

n∑
j=1
|(uuuj ,ψr+1)Rm |2.

Doing the same calculations as in the induction start, it can be shown that

n∑
j=1
|(uuuj , ψ̃r+1)Rm |2 =

m∑
i=1

λi
∣∣∣(ψ̃r+1,ψi)Rm

∣∣∣2 .
Since ψ̃r+1 is orthogonal to the vectors {ψi}ri=1 and the eigenvalues {λi}mi=1 are sorted in descending
order, we get that

n∑
j=1
|(uuuj , ψ̃r+1)Rm |2 =

m∑
i=1

λi
∣∣∣(ψ̃r+1,ψi)Rm

∣∣∣2
=

m∑
i=r+1

λi
∣∣∣(ψ̃r+1,ψi)Rm

∣∣∣2
≤ λr+1

m∑
i=r+1

∣∣∣(ψ̃r+1,ψi)Rm

∣∣∣2 .

A.1. THEOREM 3.3.1 61

Since ψ̃r+1 is normed and due to (A.12), it holds that
n∑

j=1
|(uuuj , ψ̃r+1)Rm |2 ≤ λr+1

m∑
i=1

∣∣∣(ψ̃r+1,ψi)Rm

∣∣∣2 = λr+1‖ψ̃r+1‖2Rm = λr+1 =
n∑

j=1
|(uuuj ,ψr+1)Rm |2.

This completes the proof that {ψi}ri=1 is a maximum of (Pr).

PART 2: arg max(Pr) = ∑r
i=1 λi

Let ψi denote the i.th left singular vector with 1 ≤ i ≤ r . It holds that
n∑

j=1
|(uuuj ,ψi)Rm |2 =

n∑
j=1

(uuuj ,ψi)Rm (uuuj ,ψi)Rm

=
n∑

j=1
((uuuj ,ψi)Rmuuuj ,ψi)Rm .

We can now again use equation (A.11) and the fact that ψi is normed, which gives us that
n∑

j=1
|(uuuj ,ψi)Rm |2 = λi(ψi ,ψi)Rm = λi‖ψi‖2Rm = λi . (A.12)

In particular, we thus get by Part 1 that

arg max(Pr) =
r∑

i=1

n∑
j=1
|(uuuj ,ψi)Rm |2 =

r∑
i=1

λi .

Overall, we have thus proven Theorem 3.3.1.

62 APPENDIX A. TECHNICAL PROOFS

Bibliography

[1] D. Amsallem, M. J. Zahr, and C. Farhat. Nonlinear model order reduction based on local reduced-
order bases. International Journal for Numerical Methods in Engineering, 92(10):891–916, 2012.

[2] D. Arndt, W. Bangerth, B. Blais, T. C. Clevenger, M. Fehling, A. V. Grayver, T. Heister,
L. Heltai, M. Kronbichler, M. Maier, P. Munch, J.-P. Pelteret, R. Rastak, I. Thomas, B. Turcksin,
Z. Wang, and D. Wells. The deal.II library, version 9.2. Journal of Numerical Mathematics,
28(3):131–146, 2020.

[3] P. Astrid, S. Weiland, K. Willcox, and T. Backx. Missing Point Estimation in Models Described
by Proper Orthogonal Decomposition. IEEE Transactions on Automatic Control, 53:2237–2251,
2008.

[4] J. A. Atwell, J. Borggaard, and B. King. Reduced order controllers for Burgers’ equation with
a nonlinear observer. International Journal of Applied Mathematics and Computer Science,
11:1311–1330, 2001.

[5] N. Aubry, P. Holmes, J. Lumley, and E. Stone. The dynamics of coherent structures in the wall
region of a turbulent boundary layer. Journal of Fluid Mechanics, 192:115–173, 1988.

[6] J. Baiges, R. Codina, and S. Idelsohn. Explicit reduced-order models for the stabilized finite
element approximation of the incompressible Navier–Stokes equations. International Journal for
Numerical Methods in Fluids, 72(12):1219–1243, 2013.

[7] W. Bangerth and R. Rannacher. Adaptive Finite Element Methods for Differential Equations.
Birkhäuser Verlag„ 2003.

[8] M. Barrault, Y. Maday, N. Nguyen, and A. Patera. An ‘empirical interpolation’ method: appli-
cation to efficient reduced-basis discretization of partial differential equations. Comptes Rendus
Mathematique, 339:667–672, 2004.

[9] P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W. Schilders, and L. M. Silveira. Model
Order Reduction. Volume 3: Applications. De Gruyter, Dec. 2020. Publication Title: Volume 3
Applications.

[10] S. L. Brunton, B. R. Noack, and P. Koumoutsakos. Machine Learning for Fluid Mechanics.
Annual Review of Fluid Mechanics, 52(1):477–508, 2020.

[11] M. Buffoni, S. Camarri, A. Iollo, and M. V. Salvetti. Low-dimensional modelling of a confined
three-dimensional wake flow. Journal of Fluid Mechanics, 569:141–150, 2006.

[12] J. Burkardt, M. Gunzburger, and H.-C. Lee. POD and CVT-based reduced-order modeling of
Navier–Stokes flows. Computer Methods in Applied Mechanics and Engineering, 196(1):337–355,
2006.

[13] L. Bystricky. Using deal.II to solve problems in computational fluid dynamics. Master’s thesis,
The Florida State University, 2016.

63

64 BIBLIOGRAPHY

[14] A. Caiazzo, T. Iliescu, V. John, and S. Schyschlowa. A numerical investigation of velocity–pressure
reduced order models for incompressible flows. Journal of Computational Physics, 259:598–616,
2014.

[15] W. Cazemier, R. Verstappen, and A. Veldman. Proper orthogonal decomposition and low-
dimensional models for driven cavity flows. Physics of Fluids, 10(7):1685–1699, July 1998.
Relation: http://www.rug.nl/informatica/organisatie/overorganisatie/iwi Rights: University of
Groningen. Research Institute for Mathematics and Computing Science (IWI).

[16] S. Chaturantabut and D. Sorensen. Nonlinear Model Reduction via Discrete Empirical Interpo-
lation. SIAM J. Sci. Comput., 32:2737–2764, 2010.

[17] S. Chaturantabut and D. Sorensen. A State Space Error Estimate for POD-DEIM Nonlinear
Model Reduction. SIAM J. Numer. Anal., 50:46–63, 2012.

[18] L. Cordier and M. Bergmann. Réduction de dynamique par Décomposition Orthogonale aux
Valeurs Propres (POD). 2006.

[19] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control,
Signals and Systems, 2(4):303–314, 1989.

[20] deal.II authors. The step-26 tutorial program. https://www.dealii.org/current/doxygen/
deal.II/step_26.html#Thetestcase. Accessed: 2021-05-18.

[21] Z. Drmač and S. Gugercin. A New Selection Operator for the Discrete Empirical Interpolation
Method—Improved A Priori Error Bound and Extensions. SIAM Journal on Scientific Computing,
38(2):A631–A648, 2016.

[22] F. Durst. Grundlagen der Strömungsmechanik: eine Einführung in die Theorie der Strömung von
Fluiden. Springer-Verlag, 2007.

[23] L. C. Evans. Partial differential equations. American Mathematical Society, 2010.

[24] S. Fresca and A. Manzoni. Real-time simulation of parameter-dependent fluid flows through deep
learning-based reduced order models. Fluids, 6(7), 2021.

[25] D. Galbally, K. Fidkowski, K. Willcox, and O. Ghattas. Non-linear model reduction for uncer-
tainty quantification in large-scale inverse problems. 2009.

[26] S. Giere. Numerical and Analytical Aspects of POD-Based Reduced-Order Modeling in
Computational Fluid Dynamics. PhD thesis, 2016.

[27] V. Girault and P.-A. Raviart. Finite element methods for Navier-Stokes equations: Theory and
Algorithms. Springer-Verlag, Berlin; New York, 1986.

[28] G. Golub, C. Van Loan, P. Van Loan, and C. Van Loan. Matrix Computations. Johns Hopkins
Studies in the Mathematical Sciences. Johns Hopkins University Press, 1996.

[29] C. Gräßle, M. Hinze, J. Lang, and S. Ullmann. POD model order reduction with space-adapted
snapshots for incompressible flows. Adv. Comput. Math., 45:2401–2428, 2019.

[30] C. Gräßle, M. Hinze, and S. Volkwein. 2 Model order reduction by proper orthogonal
decomposition, pages 47–96. De Gruyter, 2020.

[31] J. G. Heywood, R. Rannacher, and S. Turek. Artificial boundaries and flux and pressure conditions
for the incompressible Navier–Stokes equations. International Journal for Numerical Methods in
Fluids, 22(5):325–352, 1996.

[32] N. Higham. Matrix Nearness Problems and Applications. 1989.

https://www.dealii.org/current/doxygen/deal.II/step_26.html#Thetestcase
https://www.dealii.org/current/doxygen/deal.II/step_26.html#Thetestcase

BIBLIOGRAPHY 65

[33] P. Holmes, J. L. Lumley, and G. Berkooz. Turbulence, Coherent Structures, Dynamical Systems
and Symmetry. Cambridge Monographs on Mechanics. Cambridge University Press, 1996.

[34] K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural Networks,
4(2):251 – 257, 1991.

[35] H. Hotelling. Analysis of a complex of statistical variables into principal components. Journal of
Educational Psychology, 24:417–441,498–520, 1933.

[36] A. Imran, A. Nayfeh, and C. Ribbens. On the stability and extension of reduced-order
Galerkin models in incompressible flows. a numerical study of vortex shedding. Theoretical and
Computational Fluid Dynamics, 23:213–237, 07 2009.

[37] A. Iollo, A. Dervieux, J. Désidéri, and S. Lanteri. Two stable POD-based approximations to the
Navier–Stokes equations. Computing and Visualization in Science, 3:61–66, 2000.

[38] A. Iollo, S. Lanteri, and J.-A. Désidéri. Stability Properties of POD–Galerkin Approximations
for the Compressible Navier–Stokes Equations. Theoretical and Computational Fluid Dynamics,
13(6):377–396, Mar 2000.

[39] I. T. Jolliffe. Principal Component Analysis. Springer Series in Statistics. Springer-Verlag, New
York, 2 edition, 2002.

[40] K. Karhunen. Zur Spektraltheorie stochastischer Prozesse. Annales Academiae scientiarum Fen-
nicae. Series A. 1, Mathematica-physica. 1946.

[41] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization, arXiv:1412.6980, 2017.

[42] B. Koc, C. Mou, H. Liu, Z. Wang, G. Rozza, and T. Iliescu. Verifiability of the Data-Driven
Variational Multiscale Reduced Order Model, 2021.

[43] K. Kunisch and S. Volkwein. Galerkin proper orthogonal decomposition methods for parabolic
problems. Numerische Mathematik, 90(1):117–148, Nov. 2001.

[44] J. N. Kutz. Deep learning in fluid dynamics. Journal of Fluid Mechanics, 814:1–4, 2017.

[45] T. Lassila, A. Manzoni, A. Quarteroni, and G. Rozza. Model Order Reduction in Fluid Dynamics:
Challenges and Perspectives, pages 235–273. Springer International Publishing, Cham, 2014.

[46] K. Lee and K. T. Carlberg. Model reduction of dynamical systems on nonlinear manifolds using
deep convolutional autoencoders. Journal of Computational Physics, 404:108973, 2020.

[47] M. Loève. Probability Theory. Van Nostrand, 1955.

[48] J. L. Lumley. The structure of inhomogeneous turbulent flows. Atmospheric Turbulence and
Radio Wave Propagation, pages 166–178, 1967.

[49] Z. Luo, J. Chen, P. Sun, and X. Yang. Finite element formulation based on proper orthogonal
decomposition for parabolic equations. Science in China Series A: Mathematics, 52(3):585–596,
Mar 2009.

[50] N. Nguyen, A. Patera, and J. Peraire. A ‘best points’ interpolation method for efficient approx-
imation of parametrized function. International Journal for Numerical Methods in Engineering,
73:521 – 543, 01 2008.

[51] B. Noack, P. Papas, and P. Monkewitz. The need for a pressure-term representation in empirical
Galerkin models of incompressible shear flows. Journal of Fluid Mechanics, 523, 01 2005.

[52] B. Noble, J. Daniel, and K. M. R. Collection. Applied Linear Algebra. Prentice Hall, 1977.

66 BIBLIOGRAPHY

[53] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, NY, USA, second
edition, 2006.

[54] M. Nonino, F. Ballarin, and G. Rozza. A Monolithic and a Partitioned, Reduced Basis Method
for Fluid–Structure Interaction Problems. Fluids, 6(6), 2021.

[55] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Te-
jani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An Imperative
Style, High-Performance Deep Learning Library. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

[56] A. Pinkus. Approximation theory of the MLP model in neural networks. Acta Numerica, 8:143–
195, 1999.

[57] R. Preisendorfer and C. Mobley. Principal Component Analysis in Meteorology and
Oceanography. Developments in atmospheric science. Elsevier, 1988.

[58] R. Rannacher. Finite Element Methods for the Incompressible Navier-Stokes Equations, pages
191–293. Birkhäuser Basel, Basel, 2000.

[59] M. Reed and B. Simon. I: Functional Analysis. Methods of Modern Mathematical Physics.
Elsevier Science, 1981.

[60] T. Richter and T. Wick. Einführung in die Numerische Mathematik - Begriffe, Konzepte und
zahlreiche Anwendungsbeispiele. Springer-Verlag, Berlin Heidelberg New York, 2017.

[61] M. Schäfer, S. Turek, F. Durst, E. Krause, and R. Rannacher. Benchmark Computations of
Laminar Flow Around a Cylinder, pages 547–566. Vieweg+Teubner Verlag, Wiesbaden, 1996.

[62] L. Sirovich. Turbulence and the dynanics of coherent structures. Part I: Coherent structures.
Quarterly of Applied Mathematics, 45(3):561–571, 1987. Full publication date: October 1987.

[63] L. Sirovich. Turbulence and the dynanics of coherent structures. Part II: Symmetries and transfor-
mations. Quarterly of Applied Mathematics, 45(3):573–582, 1987. Full publication date: October
1987.

[64] L. Sirovich. Turbulence and the dynanics of coherent structures. Part III: Dynamics and scaling.
Quarterly of Applied Mathematics, 45(3):583–590, 1987. Full publication date: October 1987.

[65] G. Stabile, F. Ballarin, G. Zuccarino, and G. Rozza. A reduced order variational multiscale
approach for turbulent flows. Advances in Computational Mathematics, 45(5):2349–2368, Dec
2019.

[66] F. Tröltzsch. Optimale Steuerung partieller Differentialgleichungen: Theorie, Verfahren und
Anwendungen. Vieweg Studium. Vieweg+Teubner Verlag, 2010.

[67] S. Volkwein. Lecture notes in "Model Reduction using Proper Orthogonal Decomposition", 2011.

[68] S. Volkwein. Lecture notes in "Proper Orthogonal Decomposition: Theory and Reduced-Order
Modelling". Aug. 2013.

[69] Z. Wang, I. Akhtar, J. Borggaard, and T. Iliescu. Proper orthogonal decomposition closure
models for turbulent flows: A numerical comparison. Computer Methods in Applied Mechanics
and Engineering, 237-240:10–26, 2012.

[70] D. Wells. Stabilization of POD-ROMs. PhD dissertation, Virginia Tech, 2015.

[71] T. Wick. Lecture notes in "Modeling, Discretization, Optimization, and Simulation of Fluid-
Structure Interaction". Nov. 2019.

[72] T. Wick. Lecture notes in "Numerical Methods for Partial Differential Equations". 2020.

Statement of Authorship

I hereby declare that I am the sole author of this master thesis and that I have not used any sources
other than those listed in the bibliography and identified as references. In particular, I declare that
all parts of this work that have been taken from other sources have been marked as such. I further
declare that I have not submitted this thesis to any other institution in order to obtain a degree.

Place, Date Julian Roth

Selbstständigkeitserklärung

Hiermit versichere ich, dass ich diese Arbeit selbstständig verfasst und keine weiteren als die angegebe-
nen Hilfsmittel verwendet habe. Insbesondere versichere ich, dass ich alle wörtlichen und sinngemäßen
Übernahmen aus anderen Werken als solche kenntlich gemacht habe. Die Prüfungsleistung wurde
bisher keiner anderen Prüfungsbehörde vorgelegt.

Ort, Datum Julian Roth

	Introduction
	Notation and mathematical tools
	Domains
	Derivatives
	Bounded operators and spectral theory
	Function spaces
	Differentiation in Banach spaces
	Optimization
	Acronyms

	The POD in finite-dimensional real-valued vector spaces
	Introduction
	Image compression
	The connection between the POD and the SVD
	POD with weighted inner product

	The POD for parabolic problems
	Model problem and direct numerical simulation
	Continuous version of POD
	Discrete version of POD
	Practical considerations for POD computation
	Reduced order modelling
	Numerical results
	FEM results
	POD resuts
	POD-ROM results

	The FEM for the Navier-Stokes equations
	The Navier-Stokes equations
	Reynolds number

	Problem setup of the Navier-Stokes benchmark
	Finite element spaces
	Weak formulation
	Solution of the weak formulation with Newton's method
	Numerical results

	The POD for the Navier-Stokes equations
	POD of velocity and pressure
	POD of velocity
	POD of pressure

	Velocity POD-ROM
	Pressure reconstruction
	Method based on velocity modes
	Method based on pressure modes
	Neural network based pressure reconstruction

	Numerical results

	Conclusion and outlook
	Conclusion
	Outlook

	Technical proofs
	Theorem 3.3.1

